Oral treatment of chickens with *Lactobacillus reuteri* LM1 reduces *Brachyspira pilosicoli*-induced pathology

Luke J. Mappley,¹,²,³ Monika A. Tcho´rzewska,¹,² Alejandro Nunez,⁴ Martin J. Woodward,³ Peter M. Bramley² and Roberto M. La Ragione¹,⁵

¹Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
²School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
³Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK
⁴Pathology Unit, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
⁵Faculty of Health and Medical Sciences, University of Surrey, Guilford, Surrey GU2 7XH, UK

Avian intestinal spirochaetosis (AIS) results from the colonization of the caeca and colon of poultry by pathogenic *Brachyspira*, notably *Brachyspira pilosicoli*. Following the ban on the use of antibiotic growth promoters in the European Union in 2006, the number of cases of AIS has increased, which, alongside emerging antimicrobial resistance in *Brachyspira*, has driven renewed interest in alternative intervention strategies. *Lactobacillus*-based probiotics have been shown to protect against infection with common enteric pathogens in livestock. Our previous studies have shown that *Lactobacillus reuteri* LM1 antagonizes aspects of the pathobiology of *Brachyspira* in *vitro*. Here, we showed that *L. reuteri* LM1 mitigates the clinical symptoms of AIS in chickens experimentally challenged with *B. pilosicoli*. Two groups of 15 commercial laying hens were challenged experimentally by oral gavage with *B. pilosicoli* B2904 at 18 weeks of age; one group received unsupplemented drinking water and the other received *L. reuteri* LM1 in drinking water from 1 week prior to challenge with *Brachyspira* and thereafter for the duration of the study. This treatment regime was protective. Specifically, *B. pilosicoli* was detected by culture in fewer birds, bird weights were higher, faecal moisture contents were significantly lower (*P*, 0.05) and egg production as assessed by egg weight and faecal staining score was improved (*P*, 0.05). Also, at post-mortem examination, significantly fewer *B. pilosicoli* were recovered from treated birds (*P*, 0.05), with only mild–moderate histopathological changes observed. These data suggest that *L. reuteri* LM1 may be a useful tool in the control of AIS.

INTRODUCTION

Avian intestinal spirochaetosis (AIS) is a disease in poultry that arises from the colonization of the caeca and colon of birds by the anaerobic spirochaete *Brachyspira* (Swayne & McLaren, 1997; Stephens & Hampson, 2001). Of the seven documented species, three are considered pathogenic in poultry, as demonstrated by experimental challenge with *Brachyspira alvinipulli* (Stanton et al., 1998), *Brachyspira intermedia* (Hampson & McLaren, 1999) and *Brachyspira pilosicoli* (Stephens & Hampson, 2002b). *B. pilosicoli* has a wide host range, also causing intestinal spirochaetosis in pigs (Trott et al., 1996) and humans (Tsinganou & Gebbers, 2010), with potential for zoonosis (Hampson et al., 2006a). AIS in layer and broiler breeder flocks has been associated with a delayed onset of lay, reduced egg weights, diarrhoea, faecal staining of eggshells, reduced growth rates, increased feed consumption and non-productive ovaries (Davelaar et al., 1986; Griffiths et al., 1987; Swayne et al., 1992; Feberwee et al., 2008). Colonization by *B. pilosicoli* has been characterized by an ability of the organism to form end-on attachments to and invade the intestinal epithelia, forming dense fringes that penetrate between enterocytes associated with inflammatory responses (Jensen et al., 2000, 2001; Feberwee et al., 2008).

Abbreviations: AIS, avian intestinal spirochaetosis; GI, gastrointestinal; HE, haematoxylin and eosin.
The prevalence of *Brachyspira* in free-range flocks in the UK has been estimated as high as 90% (Burch, 2010), with the incidence of AIS reported as increasing following the 2006 European Union ban on the subtherapeutic use of antibiotics in livestock (Castanon, 2007). With emerging resistance amongst *Brachyspira* to antimicrobials including tiamulin, a preferred treatment for AIS (Hampson et al., 2006b; Pringle et al., 2006), there is increased interest in alternative intervention strategies, such as probiotics (Collins et al., 2009).

Probiotics have been described as live micro-organisms that confer health benefits on the host when administered in adequate quantities (FAO/WHO, 2001), and include gastrointestinal (GI) commensals such as lactobacilli. Probiotics have been implicated in the competitive exclusion of pathogens via mechanisms including the secretion of antimicrobial compounds, competition for essential nutrients and host cell binding receptors, and immunomodulation (Vanderpool et al., 2008), and reduce colonization by enteric pathogens in the lower GI tract (Schoeni & Wong, 1994; La Ragione & Woodward, 2003; Stern et al., 2006; Vicente et al., 2008). Specifically, lactobacilli can exclude *Campylobacter* (Zhang et al., 2007b), *Clostridium* (La Ragione et al., 2004), *Escherichia coli* (Edens et al., 1997) and *Salmonella* (Zhang et al., 2007a; Higgins et al., 2008) from poultry. Additionally, we and others have demonstrated that lactobacilli inhibit various aspects of the biology of *Brachyspira in vivo*. *Lactobacillus johnsonii* exhibited antimicrobial activity against *B. pilosicoli* and *Brachyspira hyodysenteriae* through the production of hydrogen peroxide and a proteinaceous antimicrobial compound (Se et al., 2008). *Lactobacillus rhamnosus* and *Lactobacillus farciminis* have been implicated in inhibiting the motility of *Brachyspira* by co-aggregation with the spirochaetes and eliciting a stress response (Bernardeau et al., 2009). We demonstrated that *Lactobacillus reuteri* LM1 and *Lactobacillus salivarius* LM2 inhibited the motility, growth and adherence of *B. pilosicoli* B2904 *in vitro* (Mappley et al., 2011). We wished to test whether probiotics reduce colonization by *Brachyspira* and describe *in vivo* studies testing the hypothesis that *L. reuteri* LM1 competes against and reduces the pathogenic impact of *B. pilosicoli* in the chicken.

METHODS

Bacterial strains and culture conditions. *B. pilosicoli* B2904 was isolated from a chicken exhibiting clinical symptoms of AIS in the UK (Mappley et al., 2011), and was cultured from a stock maintained in heart infusion broth (HIB) + 30% (v/v) glycerol (Oxoid) at −80°C. Lactobacilli were cultured on De Man–Rogosa–Sharpe (MRS) agar and in MRS broth (De Man et al., 1960), in an anaerobic jar (94% H₂ and 6% CO₂) using a GasPak plus system (BBL) at 37°C for 16 h.

Preparation of bacterial strains for the *in vivo* studies. *B. pilosicoli* B2904 was harvested by centrifugation of a BEB broth culture (50 ml) at early exponential phase growth (approx. 4 days) determined from a growth curve produced using the FLUOstar Optima instrument (unpublished data) with enumeration of *B. pilosicoli* by Helber cell counting chamber. Bacterial cells were harvested by centrifugation (2447 g, 10 min) and the pellet was resuspended in 0.1 M PBS (pH 7.2) to yield 5 × 10⁶ c.f.u. ml⁻¹; this was performed rapidly under aerobic conditions, to minimize exposure to oxygen.

L. reuteri LM1 was harvested by centrifugation of a 16 h MRS broth culture (500 ml) (2447 g, 10 min). The pellet was resuspended in 100 ml distilled water and then added to a volume of 10 l (in which they were shown to remain viable without significant depletion in numbers for 2.5 h), yielding 2.5 × 10⁶ c.f.u. ml⁻¹.

Experimental birds. Thirty ISA Warren laying pullets were purchased from a commercial breeder at approximately 17 weeks of age. Upon arrival (day 1), the birds were randomly divided into two groups of 15 birds each and housed in separate, negative pressure rooms within a biosecure containment facility. Birds were housed with 12 h of artificial light per 24 h. Commercial unmedicated pelleted feed was provided *ad libitum*; one group received distilled water and the other group received distilled water supplemented with 2.5 × 10⁵ c.f.u. ml⁻¹ *L. reuteri* LM1 throughout the study from day 1, and water replacements were provided daily. These studies were performed in accordance with the UK Animals (Scientific Procedures) Act 1986, and were approved by the Animal Health and Veterinary Laboratories Agency ethics committee.

Experimental challenge. After a week of acclimatization with *L. reuteri* LM1 in the drinking water of one of the groups (18 weeks of age), the two groups each of 15 birds were pre-dosed with 2 ml 10% sodium bicarbonate solution to neutralize the crop acid and challenged by oral gavage on three alternate days (days 8, 10 and 12) with *B. pilosicoli*. Twenty minutes after crop neutralization, all birds were challenged by oral gavage with 5 × 10⁸ c.f.u. ml⁻¹ *B. pilosicoli* B2904.

Experimental monitoring. All birds were weighed and cloacal swabs were taken upon arrival and throughout the study (days indicated in Fig. 1). Cloacal swabs were plated onto *Brachyspira* selective agar that was incubated anaerobically at 37°C for 8 days. The cultures were examined at 24 h intervals for growth which, when detected visually, was picked aseptically from the plate using a sterile loop and used for PCR to verify the presence of *B. pilosicoli* (as described below). Biochemical tests for haemolysis on FABA agar, indole production, hippurate hydrolysis, and activities of β-galactosidase, β-glucosidase and β-glucosidase (Fellstrom et al., 1995, 1997), were performed on reisolated *Brachyspira* strains to ensure that they shared the same profile as the challenge strain.

Eggs were collected daily and weighed and scored for the extent of faecal eggshell staining without knowledge of which group they belonged to. Scoring was performed blind, with 0 denoting a clean eggshell and 5 a heavily stained eggshell, as previously described (Stephens & Hampson, 2002a).

Representative random samples of fresh faeces were taken from the floor of each of the rooms on a daily basis for the duration of the study, and PCR was applied to extracted faecal DNA to detect the
Fig. 1. Experimental monitoring of birds throughout the study, demonstrating the percentage of cloacal swabs positive for *B. pilosicoli* by culture and PCR (a), the mean bird weight (b) and the mean faecal moisture content (c). The mean was based on 15 birds until day 17 and then 12 birds until the study end in both the untreated (closed circle, solid line) and *L. reuteri* LM1-treated (open square, dashed line) groups. The arrows on the x axis indicate the days of challenge. Significance is shown in cases where the final data points of the challenged groups and the negative control group differed significantly; *P*<0.05; **P*<0.01.

RESULTS AND DISCUSSION

Colonization of chickens by *B. pilosicoli*

Prior to challenge with *B. pilosicoli* B2904, all cultures from cloacal swabs from both groups of birds, and random faecal samples taken from the floor of both of the rooms in which the birds were housed, were negative by PCR and culture for the genus *Brachyspira* and species *B. pilosicoli*. Following challenge, the spirochaetes were readily reisolated from cloacal swabs of both groups. Fewer birds were positive for *B. pilosicoli* by culture in the *L. reuteri* LM1-treated group (75.0%) than in the untreated group (83.3%) (Fig. 1a), perhaps attributable to the protective
effect of *L. reuteri* LM1 provided in the drinking water from a week prior to challenge and throughout the study. In the untreated group, \(\geq 75.0\% \) remained culture-positive until 12 days after final challenge (day 24), whereas in the *L. reuteri* LM1-treated group, the percentage of positive birds decreased to 50.0% by this point. By 19 days after final challenge (day 33), the percentage of culture-positive birds decreased to 50.0% in the untreated and 16.7% in the *L. reuteri* LM1-treated group. The number of *B. pilosicoli*-positive birds decreased at a greater rate in the *L. reuteri* LM1-treated group, but the mechanism of this effect is unclear and may be due to competitive exclusion and/or a potential effect on the modulation of the intestinal microbiota. Given the in vitro study data (Mappley et al., 2011), it is not unreasonable to argue that the negative impact on growth, motility and cellular invasion mediated by *L. reuteri* LM1 contributed to the protective effects observed against *B. pilosicoli*. In future in vivo studies, it would be interesting to interrogate these mechanisms further.

Faecal DNA isolated from representative random faecal samples taken from the floor of each of the rooms of birds tested positive for the genus *Brachyspira* and species *B. pilosicoli* by PCR from the day of the final challenge (day 12) and remained positive throughout the study in the untreated group. In the *L. reuteri* LM1-treated group, the faecal samples tested positive for 16 days post final challenge (day 28) and then negative until the end of the study, perhaps reflecting an extensive reduction in the number of *B. pilosicoli*-positive birds. Detection of *B. pilosicoli* by culture was mostly synonymous with direct PCR on faecal DNA. However, *B. pilosicoli* was detected by PCR but not culture on five days from untreated group faeces (days 12, 14, 24, 30 and 32) and two days from *L. reuteri* LM1-treated group faeces (days 13 and 27). Hence, the sensitivity of PCR was greater than that of culture, but as yet unquantified.

Colonization of chickens by *L. reuteri*

L. reuteri LM1 was shown to survive in distilled water for 2.5 h without significant reduction in viability, and assuming each chicken consumed approximately 200 ml per day (20.8 ml in 2.5 h) (Grashorn & Simonovic, 2009), each chicken should have consumed about \(5 \times 10^9 \) c.f.u. of viable lactobacilli. Assuming the majority of these remained viable within the GI tract of the birds, it is likely that active mechanisms of inhibition of *Brachyspira* were involved in reducing the burden of this pathogen. In vitro it has been demonstrated that LM1 inhibits *B. pilosicoli* by both pH-dependent and -independent mechanisms, and since non-viable lactobacilli inhibit the motility of *B. pilosicoli* (Mappley et al., 2011), ingestion of non-viable cells may also aid in the intervention against *B. pilosicoli*.

Representative faecal samples from the *L. reuteri* LM1-treated group tested positive for *L. reuteri* by PCR from day 1 and on each day of the study, whereas those from the untreated group were variably positive but tested negative on nine days of the study, indicating that the level of colonization was lower in this group due to its absence from the drinking water. The presence of *L. reuteri* in the birds was therefore a probable contribution, both passive and active, to inhibition of *Brachyspira*. The numbers of LM1 were not enumerated, and whether inhibition was dose-dependent requires further investigation. The fact that sporadic samples from the control group were *L. reuteri*-positive by PCR during the study suggests that either the cell number or the specific *L. reuteri* strain was important in inhibition.

The PCR used was not specific for *L. reuteri* LM1, and therefore will have detected LM1 and other native strains. Thus, other *L. reuteri* strains may have colonized the birds in both groups prior to the study. As this species is a common commensal of the GI tract (Abbas Hilmi et al., 2007) and the birds were 17 weeks of age on arrival, this is not unreasonable. We argue, however, that as groups were kept in biosure containment, the effects seen were due to the additional *L. reuteri* LM1 treatment. Without distinguishing features to enable specific detection of *L. reuteri* LM1, detection of *L. reuteri* primarily in the treated group strongly supports the argument that it was indeed *L. reuteri* LM1, a strain of chicken origin that colonized the chickens to which it was administered. The data indicate elevated numbers of *L. reuteri* in the treated group, which were probably strain LM1, plus native strains already present. The control group contained *L. reuteri* but in lower numbers, and hence it is not unreasonable to argue that the impact on *B. pilosicoli* infection may relate to the elevated numbers of all *L. reuteri* strains or of LM1 specifically.

Bird weights

The mean bird weight increased at a similar rate for both groups up to challenge, after which the rate of weight gain in the *L. reuteri* LM1-treated group was unaffected, whereas the rate decreased in the untreated group (Fig. 1b). By the end of the study (day 31), the mean weight of the birds in the *L. reuteri* LM1-treated group was approximately 0.09 kg higher than that of the untreated group \((P<0.01). \) The administration of lactobacilli probiotics has demonstrated positive effects on weight gain in poultry before (Lan et al., 2003; Timmerman et al., 2006), and our findings suggest that strain LM1 acts similarly to those *Lactobacillus* probiotics reported earlier.

Faecal moisture content

Following challenge with *B. pilosicoli*, the faecal moisture content of the untreated group increased significantly compared with the *L. reuteri* LM1-treated group \((P<0.05) \) (Fig. 1c). The faecal moisture content of the untreated group continued to increase until 8 days post final
challenge (day 20), when it was significantly greater (~6.8%) than that of the L. reuteri LM1-treated group (P<0.05). The faecal moisture content of both groups decreased after day 21. In the L. reuteri LM1-treated group, there was no significant difference in faecal moisture content between the first and final days of the study. However, there were significant differences between these time points for the untreated group (P<0.05). At the end of the study, the faecal moisture content of the L. reuteri LM1-treated group was significantly lower than the untreated group (P<0.05). Rather than a direct effect of the lactobacilli reducing faecal moisture content, it is probable that this effect resulted from the mitigation of B. pilosicoli colonization and infection, hence alleviating clinical symptoms including increased faecal moisture content (Jamshidi & Hampson, 2003).

Egg production

Egg production in both groups was similar up to challenge, after which there was an 8-day period when the L. reuteri LM1-treated group generally laid slightly greater numbers of eggs per day than the untreated group (Table 1). From 6 days post final challenge (day 18), the number of eggs laid per day appeared to stabilize, with both groups of birds laying between eight and 11 eggs per day. Previous studies have related probiotic supplementation to improved egg production (Tortuero & Fernandez, 1995; Kurtoglu et al., 2004); however, others have noted no effect on egg production (Balevi et al., 2001).

The mean weight of eggs from across the whole study was significantly greater for the L. reuteri LM1-treated (54.81 ± 8.23 g) than the untreated (52.27 ± 5.58 g) group (P<0.001) (Table 1). Mean egg weights were similar between the two groups pre-challenge, but subsequently (except days 15, 17 and 32), the mean egg weight of the L. reuteri LM1-treated group was greater than that of the untreated group (Table 1). Mean egg weights of the L. reuteri LM1-treated group were significantly greater than those of the untreated group on days 18, 25–31 and 33 (P<0.05). Significant increases in egg weight have been associated with probiotic supplementation, and it was postulated that this resulted from increased digestion of nutrients by probiotic bacteria (Nahanshon et al., 1992, 1994; Tortuero & Fernandez, 1995). The greater egg weights of the L. reuteri LM1-treated group may simply reflect the mitigation of B. pilosicoli infection aided by administration of L. reuteri LM1.

Eggs were scored on the extent of faecal staining without knowledge of the group to which they belonged. The mean score for the faecal staining of eggs from the L. reuteri LM1-treated group was generally lower than that of the untreated group after the challenge with B. pilosicoli (Table 1); on nine of the 21 days after the final challenge, there were significant differences between the mean scores of the two groups (P<0.05).

Post-mortem examination at 5 days post final Brachyspira challenge

At 5 days post final challenge, post-mortem examination revealed few macroscopic pathological findings. Petchia were detected in the duodenum and upper jejunum of two birds in both groups, but no Brachyspira were isolated from these tissues. Interestingly, the caeca from the untreated group were smaller, with a lower mean caecal weight (12.6 ± 2.4 g), without significance, than that of the L. reuteri LM1-treated group (13.8 ± 1.2 g). B. pilosicoli were recovered from the caeca and colon of all three birds in both groups, but at significantly greater numbers in the caeca (P<0.05) and colon (P<0.001) of birds from the untreated group (Fig. 2a). The mean numbers of B. pilosicoli recovered from the caeca and colon of the untreated group were nine- and 50-fold greater, respectively, than those recovered from birds of the L. reuteri LM1-treated group. This suggests that L. reuteri LM1 may have inhibited B. pilosicoli growth, motility and/or adherence, an effect previously observed in vitro (Mappley et al., 2011). This greater colonization in the untreated birds may relate to the reduced mean weight of the caeca. B. pilosicoli were also isolated from the ileum, spleen and oviduct of one bird from the untreated group and two birds from the L. reuteri LM1-treated group, the vagina of two birds from the untreated group and one bird from the L. reuteri LM1-treated group, the liver of one bird from each group and the uterus of just one bird from the untreated group.

Microscopical examination of the tissues sampled at 5 days post final challenge revealed no pathology in the colon and caecal tissues in the untreated birds examined at post-mortem. However, crypt abscesses, secondary follicles and abundant diffuse gut-associated lymphoid tissue (GALT) were identified in the caecal tonsils of one of the three birds examined from the L. reuteri LM1-treated group. Interestingly, frequent multifocal lymphohistiocytic infiltration was noted in perportal spaces of the liver of two birds examined from the untreated group (Fig. 3a). Despite their recovery, this pathology was not observed in the birds examined from the L. reuteri LM1-treated group. B. pilosicoli have previously been isolated from the liver (Kostman et al., 1995) and bloodstream (Bait-Merabet et al., 2008; Prim et al., 2011) in humans, and Brachyspira infection was associated with hepatic and splenic amyloidosis in duck flocks (Glávits et al., 2011). This is the first report of Brachyspira in the liver of chickens.

Post-mortem examination at 21 days post final Brachyspira challenge

Post-mortem examination at 21 days after the final challenge revealed that the caeca were again smaller in the birds of the untreated group, with their mean caecal weight (18.1 ± 3.7 g) 1.6 g lower, without significance, than that of the L. reuteri LM1-treated group birds (19.7 ± 4.4 g). B. pilosicoli were recovered from the caeca...
Table 1. Monitoring of egg production

The number of eggs laid and mean egg weights were recorded alongside mean scores for the faecal staining of eggshells on a daily basis throughout the study. Fifteen birds were present in the study until day 17, and then 12 birds were present until the study end in both the untreated and L. reuteri LM1-treated groups. Significance is shown in cases where the mean score for the faecal staining differed significantly between the two groups.

<table>
<thead>
<tr>
<th>Day</th>
<th>No. of eggs</th>
<th>Untreated</th>
<th></th>
<th>L. reuteri LM1-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of eggs</td>
<td>Mean weight (g)</td>
<td>Mean score*</td>
<td>No. of eggs</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>57.11 ± 16.40</td>
<td>0.00 ± 0.00</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>58.84 ± 6.67</td>
<td>0.00 ± 0.00</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>50.04 ± 0.30</td>
<td>0.00 ± 0.00</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>44.27 ± 0.93</td>
<td>0.00 ± 0.00</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>47.51 ± 3.95</td>
<td>0.00 ± 0.00</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>49.71 ± 13.46</td>
<td>0.00 ± 0.00</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>46.70 ± 6.20</td>
<td>0.11 ± 0.33</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>47.94 ± 5.42</td>
<td>1.00 ± 1.15</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>49.10 ± 4.58</td>
<td>0.63 ± 1.06</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>48.11 ± 3.88</td>
<td>0.63 ± 0.74</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>50.45 ± 6.57</td>
<td>0.38 ± 0.52</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>50.60 ± 4.78</td>
<td>1.60 ± 1.35</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>52.09 ± 5.46</td>
<td>0.80 ± 0.63</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>51.29 ± 3.87</td>
<td>1.17 ± 1.03</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>53.69 ± 4.43</td>
<td>0.92 ± 0.67</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>49.59 ± 4.18</td>
<td>1.55 ± 1.51</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>55.07 ± 2.91</td>
<td>1.13 ± 1.36</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>54.77 ± 7.33</td>
<td>0.70 ± 0.67</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>55.02 ± 8.99</td>
<td>0.60 ± 0.70</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>54.78 ± 8.76</td>
<td>1.27 ± 1.10</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>51.74 ± 2.72</td>
<td>1.56 ± 1.01</td>
<td>11</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>52.24 ± 3.97</td>
<td>0.82 ± 0.60</td>
<td>11</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>54.81 ± 3.49</td>
<td>1.11 ± 0.78</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>11</td>
<td>52.54 ± 3.35</td>
<td>0.91 ± 0.70</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>53.15 ± 2.86</td>
<td>0.82 ± 0.75</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>52.76 ± 2.78</td>
<td>0.73 ± 0.65</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>53.89 ± 2.61</td>
<td>1.25 ± 1.04</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>52.45 ± 2.66</td>
<td>1.08 ± 1.08</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>54.10 ± 2.65</td>
<td>1.00 ± 0.63</td>
<td>11</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>54.90 ± 3.44</td>
<td>1.30 ± 1.25</td>
<td>11</td>
</tr>
<tr>
<td>33</td>
<td>11</td>
<td>54.69 ± 3.14</td>
<td>0.64 ± 0.67</td>
<td>11</td>
</tr>
</tbody>
</table>

*Faecal staining of egg score: 0, clean eggshell; 5, heavily stained eggshell.
†P<0.05.
‡P<0.01.
§P<0.001.

and colon of all three birds of the untreated group, but from the caeca of only two birds and colon of one bird from the L. reuteri LM1-treated group. The mean number of B. pilosicoli isolated from the caeca of birds from the untreated group was approximately 33-fold greater than that of the L. reuteri LM1-treated group (P<0.05) (Fig. 2b). Moreover, the mean number isolated from the colon of birds from the untreated group was approximately 24-fold greater than that of the L. reuteri LM1-treated group (P<0.01). The smaller caeca of birds from the untreated group at this time point may again be explained by the greater extent of B. pilosicoli colonization in untreated birds. Brachyspira were also recovered from the ileum, liver and uterus of just one bird from the untreated group, the isthmus of one bird of the untreated group and two birds of the L. reuteri LM1-treated group, and the vagina of two birds from the untreated group and one bird from the L. reuteri LM1-treated group.

Concordant with the bacteriological findings, more severe pathology was noted in birds from the untreated group, including secondary follicle proliferation, lymphoid hyperplasia
(Fig. 3c), crypt abscesses, distended crypts and subepithelial haemorrhages (Fig. 3e) in the caecal tonsil, which have been described before in poultry colonized by *B. pilosicoli* (Feberwee et al., 2008). Pathology is not necessarily correlated with numbers of *B. pilosicoli*, since no pathology was noted in the colon and caeca at 5 days, despite *B. pilosicoli* numbers differing to a similar extent between the two groups, although this may reflect the timing of induction of pathology. Less evident pathology was noted in the liver, with the liver of the bird from the

Fig. 2. Colonization levels of *B. pilosicoli* in different tissues sampled at post mortem, both 5 days post final challenge (a) and 21 days post final challenge (b). The mean was taken from three birds examined at the two time points from birds of the untreated (closed bar) and *L. reuteri* LM1-treated (open bar) groups. Significance is shown in cases where *B. pilosicoli* colonization in the same tissue samples of the two groups differed significantly; *P*<0.05; **P**<0.01; ***P***<0.001.

Fig. 3. HE-stained tissues demonstrating histopathological changes in birds experimentally challenged with *B. pilosicoli* B2904 from the untreated (a, c and e) and *L. reuteri* LM1-treated groups (b, d and f). The tissues were examined blind and the images were selected to display the pathology recorded. Pathology was noted in the liver at 5 days post *Brachyspira* challenge (a, b) and the caecal tonsil (c–f) at 21 days post final *Brachyspira* challenge. In tissues examined from birds in the untreated group, periportal lymphocytic infiltration was observed in the liver (i). Haemorrhages (ii), abundant secondary follicles (iii) and distended crypts containing bacterial colonies (iv) were observed in caecal tonsil tissues. Only mild pathology was noted in the tissues examined from the *L. reuteri* LM1-treated group.
untreated group from which B. pilosicoli was isolated displaying few areas of lymphocytic infiltration, perhaps induced by B. pilosicoli infection. In birds from the L. reuteri LM1-treated group, active secondary follicles were noted in the caecal tonsil of one bird and crypt abscesses in the caecal tonsil of another, but in general, the tissues displayed less pathology than those of the untreated group (Fig. 3d, f). The reduction in B. pilosicoli colonization and the severity of the pathology observed in L. reuteri LM1-treated birds highlight a potential protective function of L. reuteri LM1 against AIS.

Concluding remarks
Previously, we demonstrated the ability of L. reuteri LM1 to mitigate the pathobiology induced by Brachyspira by inhibiting growth, motility and adherence in vitro (Mappley et al., 2011). Thus, the scope of this study focused on the potential competitive exclusion of L. reuteri LM1 against AIS in chickens experimentally challenged with B. pilosicoli B2904. Given the weight of data indicating a reduction in colonization and clinical symptoms, we argue that L. reuteri LM1 confers health benefits in vivo and can be truly described as a probiotic. Whilst some effects may relate to a direct effect from probiotic supplementation such as weight gain, it is possible that the antagonism of B. pilosicoli is largely responsible. The rapid growth and robust nature of lactobacilli compared with the slow-growing, fastidious Brachyspira make these species ideal probiotic candidates for intervention against AIS, possibly by niche competition, passive co-aggregation and/or acidification. Our in vitro studies demonstrated that heat-killed lactobacilli and cell-free supernatant inhibit aspects of Brachyspira biology (Mappley et al., 2011). Thus, even non-viable LM1 may also have a protective effect by purely passive mechanisms such as binding Brachyspira. Developing specific LM1 markers for detection would be valuable in tracing survival and increased faecal water content.

REFERENCES

ACKNOWLEDGEMENTS
The authors would like to thank members of the Animal Service Unit (ASU) and the Department of Histopathology at the Animal Health and Veterinary Laboratories Agency for their technical support with in vivo studies. We acknowledge receipt of funding for this study from the British Egg Marketing Board Research and Education trust.

