Enteric pathogen surveillance in a case-control study of acute diarrhoea in the town of Kisii, Kenya

Acute diarrhoea is a major cause of morbidity and mortality in Kenya, particularly in children younger than 5 years, and can be caused by a multitude of bacterial, viral and parasitic organisms (Beaty et al., 2009; Santosham et al., 2010). The capability of laboratories to detect a wide range of enteric pathogens varies considerably among medical facilities in Kenya, resulting in a significant proportion of acute diarrhoea disease cases with undetermined aetiologies. This lack of proper laboratory diagnosis can lead to missed treatments or the unwarranted use of antibiotics (Brooks et al., 2006). An acute diarrhoea case-control study was initiated by the US Army Medical Research Unit – Kenya at several Kenya Ministry of Health facilities in western Kenya in September 2009 to account for this lack of data, and the results of 2 years of surveillance at two district hospitals located in Kisumu and Kericho were recently published (Swierczewski et al., 2013). Here, we report the results of 1 year of surveillance at Kisii Level 5 Hospital in the town of Kisii, Kenya.

Stool samples were collected from 25 May 2011 to 31 May 2012 from outpatients with acute diarrhoea (cases) and age-matched controls seen at Kisii Level 5 Hospital. Acute diarrhoea cases were defined as those individuals having three or more episodes of loose, bloody or watery stool in less than a 24 h period and of no more than 14 days in duration. Asymptomatic age-matched controls were defined as having no episodes of diarrhoea within 2 weeks before enrolment. Informed consent was obtained from subjects older than 18 years and from a parent or guardian for individuals younger than 18 years.

Stool was aliquoted into 10% formalin, Cary-Blair transport media (Medical Chemical Corporation) and a clean vial and transported in temperature-controlled coolboxes to the microbiology laboratory in Kericho. Stool was inoculated onto the following selective media: MacConkey, thioglycollate, bile sucrose, sheep blood, MacConkey-sorbitol, Hektoen, cefoperazone-vancomycin-ampicillin and cefsulodin-Irgasan-novobiocin. Bacterial identification and antibiotic susceptibility testing (except for Campylobacter spp. identification) were performed using MicroScan WalkAway40 (Siemens). Suspected Campylobacter isolates were identified at the species level and Etest (bioMerieux) was used to test antibiotic susceptibility (Davis & DiRita, 2008).

A multiplex PCR was used for the detection of enterotoxigenic Escherichia coli (ETEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and enteropathogenic E. coli (EPEC). To detect ETEC, the following primers were used to amplify a 308 bp fragment of the heat-labile toxin and a 147 bp fragment of the heat-stable toxin, respectively: 5'-CACACGGAGCCTGCTAACGT-3' and 5'-CCCCCAGCTAGCTTAGTTT-3', and 5'-GCGAACACGGGTTATGGT-3' and 5'-CCGGTTACCCCGAGATTACACA-3'. The following primers were used to amplify a 650 bp fragment of the attA gene for the detection of EAEC: 5'-CTGGGGAAAACGGTCAT-3' and 5'-CAATGCTGAAATCCCCGTGT-3'. To detect EPEC, the following primers were used to detect a 350 bp fragment of the bfpA gene: 5'-GGAATCAGACGAGAC-3' and 5'-GGAATCAGACGACTTTACACAC-3'. The following primers were used to detect a 423 bp fragment of the iapA gene to detect EHEC: 5'-TGGAAAAACTCAGTGCTCT-3' and 5'-CCACGGTCAAATCATATTCTCT. Cycling conditions were as follows: 95°C for 45 s, 55°C for 45 s and 72°C for 45 s, with a final elongation step of 72°C for 10 min. Amplicons were visualized using gel electrophoresis.

Ova and parasite examination was conducted by microscopy after stool concentration using the Mini Parasf SF kit (DiaSys) and analysed as previously described (Swierczewski et al., 2013). Rotavirus was detected using an enzyme immunoassay kit (Premier Rotaculture, Meridian Bioscience). Multivariate logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Data were analysed using GraphPad Prism Version 5.01 and P<0.05 was considered statistically significant.

A total of 312 total stool samples (156 cases and 156 controls) were collected and processed for enteric pathogens. The median ages for the cases and the controls were 61 and 60 months, respectively. The proportions of cases and controls in specific age groups were as follows: 0–1 year, 19%; 2–5 years, 32%; 6–19 years, 17%; and ≥20 years, 32%. Rotavirus (OR 11.9; P=0.0001), Shigella (OR 18.9; P=0.0001) and Campylobacter (OR 9.4; P=0.02) were detected significantly more often in cases than in controls (Table 1). Similar numbers of the diarrhoeagenic E. coli and Giardia lamblia were found in both cases and controls. Entamoeba histolytica/E. dispar (OR 0.2; P=0.002) was detected significantly more often in controls than cases (Table 1). Enteric organisms were detected significantly more often in cases than controls (65% versus 35%; OR 3.5; P<0.0001). Rotavirus was found more often in the 0–11 months (18.3%) and 2–5 years (9%) age groups, while E. histolytica/E. dispar (14%) and 9% of Shigella isolates were detected in the age group ≥20 years.

Overall, 56%, 78% and 89% of the Shigella isolates and 40% of C. jejuni isolates were resistant to ampicillin, tetracycline and trimethoprim/sulfamethoxazole (TMP-SXT), respectively. The ranges of antibiotic resistance to ampicillin, tetracycline and TMP-SXT for the diarrhoeagenic E. coli was 1774
were 75–94 %, 57–94 % and 75–100 %, respectively. Ciprofloxacin resistance was seen in 47 % of EIEC isolates, and 12.5 % of EAEC isolates and 11.8 % EIEC were detected significantly more often in acute diarrhoea cases as opposed to controls (Swierczewski et al., 2013). In contrast to the Kericho and Kisumu study, primers for EIEC and EPEC were added to the multiplex PCR used for the Kisii isolates, allowing us to identify these enteric pathogens and thus expanding the diagnostic capabilities from the previous study. Although there are several limitations to this study, including the lack of known HIV status among the participants and the limited viral diagnostic component, our findings will allow the development of better diarrhoea treatment and community intervention strategies to reduce acute diarrhoea in Kisii town and the surrounding areas.

Acknowledgements

(routine DA/WRAIR and KEMRI disclaimer). This work was supported by the Armed Forces Health Surveillance Center – Global Emerging Infections Surveillance and Response Systems, Silver Spring, MD, USA. The content of this publication does not necessarily reflect the views or policies of the US Department of the Army or the US Department of Defense. This study was approved by the Kenya Medical Research Institute Ethical Review Committee and the

Table 1. Numbers and percentages of enteric pathogens in cases and controls from Kisii Level 5 Hospital

<table>
<thead>
<tr>
<th>Pathogen*</th>
<th>Cases, n (%) (n = 156)</th>
<th>Controls, n (%) (n = 156)</th>
<th>Odds ratio (95 % CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shigella</td>
<td>17 (10.9)</td>
<td>1 (0.6)</td>
<td>18.9 (2.5–144.4)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>9 (5.8)</td>
<td>1 (0.6)</td>
<td>9.4 (1.2–75.6)</td>
<td>0.02</td>
</tr>
<tr>
<td>EPEC</td>
<td>8 (5.1)</td>
<td>4 (2.6)</td>
<td>2.1 (0.6–7.1)</td>
<td>NS</td>
</tr>
<tr>
<td>EAEC</td>
<td>11 (7.1)</td>
<td>13 (8.3)</td>
<td>0.8 (0.4–1.9)</td>
<td>NS</td>
</tr>
<tr>
<td>EHEC</td>
<td>2 (1.3)</td>
<td>2 (1.3)</td>
<td>1 (0.1–7.2)</td>
<td>NS</td>
</tr>
<tr>
<td>EIEC</td>
<td>12 (7.7)</td>
<td>5 (3.2)</td>
<td>2.5 (0.9–7.3)</td>
<td>NS</td>
</tr>
<tr>
<td>ETEC</td>
<td>5 (3.2)</td>
<td>2 (1.3)</td>
<td>2.5 (0.5–13.3)</td>
<td>NS</td>
</tr>
<tr>
<td>Salmonella</td>
<td>0 (0)</td>
<td>2 (1.3)</td>
<td>0.2 (0.01–4.1)</td>
<td>NS</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>21 (13.5)</td>
<td>2 (1.3)</td>
<td>11.9 (2.8–52.1)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>11 (7.1)</td>
<td>9 (5.8)</td>
<td>1.2 (0.5–3.1)</td>
<td>NS</td>
</tr>
<tr>
<td>Entamoeba histolytica/E. dispar</td>
<td>3 (1.9)</td>
<td>13 (8.3)</td>
<td>0.2 (0.06–0.8)</td>
<td>0.002</td>
</tr>
<tr>
<td>Campylobacter parvum</td>
<td>2 (1.3)</td>
<td>0 (0)</td>
<td>5.1 (0.2–10.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>55 (35)</td>
<td>102 (65)</td>
<td>3.5 (2.2–5.5)</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

*P<0.05 for numbers of pathogens in cases versus controls.

[1] Numbers and percentages of enteric pathogens in cases and controls from Kisii Level 5 Hospital.

E. coli enterotoxigenic

Rotavirus, kind to be conducted at this facility.

Extended-spectrum

EAEC isolates and 11.8 % EIEC seen in 47 % of EIEC isolates, and 12.5 % respectively. Ciprofloxacin resistance was 75–94 %, 57–94 % and 75–100 %, respectively. Ciprofloxacin resistance was seen in 47 % of EIEC isolates, and 12.5 % of EAEC isolates and 11.8 % EIEC were identified as producing extended-spectrum β-lactamases (ESBLs).

The present case-control study conducted at Kisii Level 5 Hospital is the first of its kind to be conducted at this facility. Rotavirus, Shigella and Campylobacter were detected significantly more often in cases than controls, and these findings are consistent with the data from the Kericho and Kisumu sites (Swierczewski et al., 2013). E. histolytica/E. dispar was detected significantly more often in controls, as was also evident at the Kisumu site (Swierczewski et al., 2013). Rotavirus, as expected, was most prevalent in children younger than 5 years and Shigella was found to be most prevalent in adults aged 20 years and older. These data are consistent with those from the Kericho and Kisumu sites.

The rotavirus results observed are comparable with data from the recently published Global Enteric Multicenter Study (GEMS), which included a site in Nyanza Province, Kenya (Kotloff et al., 2013). The GEMS authors showed that in addition to rotavirus, Shigella, C. parvum and ETEC (heat-stable enterotoxin only or both heat-labile and heat-stable enterotoxins) were detected significantly more often in subjects with moderate to severe diarrhoea than in control subjects among children aged 0–59 months. In this and our previous study, Shigella was detected significantly more often in the cases, but in adults aged 20 years and older, while there was no difference in the detection of ETEC and C. parvum between cases and controls (Swierczewski et al., 2013). Because GEMS only enrolled paediatric patients, it is uncertain whether Shigella would have been detected significantly more often in acute diarrhoea cases as opposed to controls in an adult population, as has been previously shown in Kenya (Brooks et al., 2006; Swierczewski et al., 2013). Furthermore, there could have been multiple GEMS surveillance sites in Nyanza Province in more remote, rural areas which would be in contrast to our single surveillance site in Nyanza Province located directly in the urban city of Kisumu. The surveillance sites in Kisii and Kericho were also located in the towns, where urban residents would be more apt and able to afford to seek treatment for acute diarrhoea, as opposed to those from more rural, remote locations. The inclusion of more rural areas with suspect water quality and possibly poorly treated water could account for the significant detection of ETEC and C. parvum in participants enrolled in GEMS.

A major concern from the current case-control study is the emergence of ciprofloxacin resistance in all bacterial pathogens and those EIEC and EAEC isolates identified as ESBLs. ETEC and EAEC ESBLs were isolated from the Kericho and Kisumu sites, but the percentage of ciprofloxacin resistance among the bacterial isolates was higher at the Kisii site (Swierczewski et al., 2013). In contrast to the Kericho and Kisumu study, primers for EIEC and EPEC were added to the multiplex PCR used for the Kisii isolates, allowing us to identify these enteric pathogens and thus expanding the diagnostic capabilities from the previous study. Although there are several limitations to this study, including the lack of known HIV status among the participants and the limited viral diagnostic component, our findings will allow the development of better diarrhoea treatment and community intervention strategies to reduce acute diarrhoea in Kisii town and the surrounding areas.
Correspondence

Brett E. Swierczewski,1,2
Elizabeth A. Odundo,1
Margaret C. Koech,1 Janet N. Ndonye,1
Ronald K. Kirera,1 Cliff P. Odhiambo,1
Erick K. Cheruiyot,1
Douglas N. Shaffer,1
Abigail N. Ombogo1 and Edwin V. Oaks2

1United States Army Medical Research Unit – Kenya, Kericho Field Station, PO Box 1357 Hospital Road, Kericho, Kenya 20220
2Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA

Correspondence: Brett E. Swierczewski (brett.swierczewski@us.army.mil)

