Elena Sevillano,1 Elena Fernández,1 Zulema Bustamante,2 Silvia Zabalaga,2 Ikerne Rosales,1 Adelaida Umaran1 and Lucía Gallego1

Correspondence
Lucía Gallego
lucia.gallego@ehu.es

1Dpto Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Campus de Bizkaia, Bº Sarriena s/n, 48940 Leioa (Bizkaia), Spain
2Departamento de Bioquímica, Facultad de Bioquímica y Farmacia, Universidad Mayor de San Simón, Avenida Aniceto Arce s/n, Cochabamba, Bolivia

Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in Bolivia

Acinetobacter baumannii is an emerging multidrug-resistant pathogen and very little information is available regarding its imipenem resistance in Latin American countries such as Bolivia. This study investigated the antimicrobial resistance profile of 46 clinical strains from different hospitals in Cochabamba, Bolivia, from March 2008 to July 2009, and the presence of carbapenemases as a mechanism of resistance to imipenem. Isolates were obtained from 46 patients (one isolate per patient; 30 males, 16 females) with an age range of 1 day to 84 years, and were collected from different sample types, the majority from respiratory tract infections (17) and wounds (13). Resistance to imipenem was detected in 15 isolates collected from different hospitals of the city. These isolates grouped into the same genotype, named A, and were resistant to all antibiotics tested including imipenem, with susceptibility only to colistin. Experiments to detect carbapenemases revealed the presence of the OXA-58 carbapenemase. Further analysis revealed the location of the \textit{blaOXA-58} gene on a 40 kb plasmid. To our knowledge, this is the first report of carbapenem resistance in \textit{A. baumannii} isolates from Bolivia that is conferred by the OXA-58 carbapenemase. The presence of this gene in a multidrug-resistant clone and its location within a plasmid is of great concern with regard to the spread of carbapenem-resistant \textit{A. baumannii} in the hospital environment in Bolivia.

INTRODUCTION

Acinetobacter baumannii is a nosocomial pathogen responsible for severe infections often diagnosed in patients attending hospitals worldwide. Carbapenems are considered the drugs of choice for treating these infections, but they are not always efficient due to the occurrence of multidrug-resistant strains of this bacterium (Canduela \textit{et al.}, 2006; Coelho \textit{et al.}, 2006; Higgins \textit{et al.}, 2010a; Mendes \textit{et al.}, 2009; Poirel \textit{et al.}, 2010). Mechanisms enabling the development of carbapenem resistance include an induced decrease in membrane permeability, efflux pump overexpression and the production of carbapenemases. Among these mechanisms, the production of carbapenemases plays a major role in carbapenem resistance in most Gram-negative bacilli, including \textit{A. baumannii} clinical isolates (Canduela \textit{et al.}, 2006; Coelho \textit{et al.}, 2006; Poirel \textit{et al.}, 2010; Queenan & Bush, 2007; Walsh, 2010). The most common type of enzyme occurring in \textit{A. baumannii} is represented by the carbapenem-hydrolysing class D \(\beta\)-lactamases, which are divided into five phylogenetic groups: OXA-23-like, OXA-24-like, OXA-58-like, OXA-51-like, which is intrinsic to \textit{A. baumannii}, and the recently described OXA-143-like enzymes (Higgins \textit{et al.}, 2009; Queenan & Bush, 2007).

Although \textit{A. baumannii} is considered an emerging pathogen and much research has been carried out on it, there have been only a few studies concerning the mechanisms conferring carbapenem resistance of this bacterium in Latin American countries (Celenza \textit{et al.}, 2006; Coelho \textit{et al.}, 2006; Sader \textit{et al.}, 2004; Sgambatti \textit{et al.}, 2010). In addition, there are no previous publications regarding the resistance of \textit{A. baumannii} to imipenem or the occurrence of carbapenemases in \textit{A. baumannii} isolates in Bolivia.

In this study, we analysed the antibiotic resistance, in particular to imipenem, of clinical isolates of \textit{A. baumannii} obtained from several hospitals in Cochabamba, Bolivia, and the presence of carbapenemases as a mechanism of resistance to imipenem in these strains.

METHODS

Bacterial isolates. Forty-three \textit{A. baumannii} and three \textit{Acinetobacter} genomic species 13TU, collected from March 2008 to July 2009 in the
Microbiology Service of the Hospital Gastroenterológico Boliviano-Japones in Cochabamba, Bolivia, were analysed in this study. This hospital collects isolates from different hospitals of the city of Cochabamba: Hospital Viedma, Clínica Olivos and Hospital Materno-Infantil. They were identified using the API 32 system (bioMérieux) and the Phoenix System (Beckton Dickinson). Identification to species level was further confirmed by gyrB multiplex PCR (Higgins et al., 2010c).

Isolates were obtained from 46 patients (one isolate per patient), comprising 30 males and 16 females of different ages ranging from 1 day to 84 years, and were collected following conventional bacteriological culture techniques from different samples: 17 specimens from respiratory tract infections, 13 from wounds, four from blood cultures, four from catheter samples, three from urine samples and five from other samples.

Susceptibility testing. MICs were determined using the Phoenix System (Beckton Dickinson) according to current Clinical and Laboratory Standards Institute guidelines (CLSI, 2007). The antibiotics tested were: amikacin, gentamicin, tobramycin, trimethoprim/sulfamethoxazole, amoxicillin/clavulanic acid, ampicillin, aztreonam, ceftazolin, cefepime, cefotixin, cefotaxime, ceftriaxone, colistin, imipenem, meropenem, piperacillin/tazobactam, rifampicin, fosfomycin, nitrofurantoin and ciprofloxacin.

Molecular typing by PFGE. Apd-digested genomic DNA was prepared according to the manufacturer’s instructions (Bio-Rad) and restricted fragments were separated on a CHEF-DR II system (Bio-Rad) for 30 h at 14 °C with 5–35 s of linear ramping at 6 V cm⁻¹ (Turton et al., 2004). DNA fingerprints were analysed using Quantity One 1-D Analysis Software (Bio-Rad) following criteria described previously (Tenover et al., 1995).

β-Lactamase detection and sequencing experiments. Phenotypic detection of carbapenemases and metallo-β-lactamases was analysed by the Hodge test, and the Hodge test with zinc sulfate/double disc synergy test, respectively (Lee et al., 2003). Extended-spectrum β-lactamases were determined by a double disc synergy test analysing the presence of synergy between discs of cephalosporins and inhibitors (Celenza et al., 2006).

Genotypic detection of carbapenemase genes was carried out by multiplex PCR amplifying blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like and blaOXA-143-like genes, and by PCR using primers specific for the blaIMP and blaVIM genes, as described previously (Canduela et al., 2006; Higgins et al., 2010b; Woodford et al., 2006). Fragments corresponding to the entire coding region of blaOXA-58 were sent for sequencing.

Presence of genetic class 1 integrons, insertion sequences and plasmids. PCR experiments were carried out to detect class 1 integrons (with primers corresponding to 3′ and 5′ conserved sequences) and insertion sequences ISAba-1, -2 and -3 with specific primers, as described previously (Gallego & Towner, 2001; Poirel et al., 2005). The relationship between blaOXA-58 and the detected insertion sequences was determined using custom primers anchored in the oxacillinase-encoding genes and in the IS elements.

Extracted plasmid DNA was carried out using a commercial kit according to the manufacturer’s instructions (Plasmid Midi kit; Qiagen). The size of the plasmids was determined by comparison with control strains of Escherichia coli NCTC 50193 and NCTC 59192, which contain plasmids ranging in size from 2 to 163.3 kb, as described previously (Sevillano et al., 2009).

Location and characterization of the blaOXA-58 gene. Plasmid extractions separated on agarose gels were transferred to a nylon membrane and subsequently UV cross-linked and hybridized with a specific digoxigenin–dUTP-labelled blaOXA-58 probe (Sambrook & Russell, 2001).

RESULTS AND DISCUSSION

Determination of MICs showed that there was a high level of resistance to all antibiotics tested, with the exception of colistin. All isolates were resistant to aztreonam, cefoxitin, cefuroxime, fosfomycin and nitrofurantoin, and levels of resistance >75% were detected to most of the other antibiotics tested. In contrast, all isolates remained susceptible to colistin (Table 1).

In our study, imipenem resistance was observed in 35% of isolates. This value was different from that obtained in a previous study carried out in hospitals in Santa Cruz (Bolivia), where carbapenem resistance was not found (Celenza et al., 2006). It was difficult to compare the results in this study with those in other regions due to the lack of published reports. However, the observed percentage of carbapenem-resistant isolates was similar to that found in 2004 in Argentina (39.3%), Venezuela (36.4%), Brazil (31.1%) and Colombia (30.8%) (Rossi et al., 2008; Sader et al., 2004; Sgambatti et al., 2010; Tognim et al., 2004). In contrast, our results were different from those found for carbapenem resistance in isolates in Chile (6.5%), Mexico (1.1%) or Guatemala, Honduras, Panama, Puerto Rico and Jamaica where no carbapenem-resistant isolates were found (Tognim et al., 2004). These percentages may have increased more recently as reported from hospitals in Puerto Rico, where imipenem-resistant isolates have emerged recently (Robledo et al., 2010). Reports from Asia-Pacific nations and Europe have revealed on average a lower percentage of carbapenem-resistant isolates (Mendes et al., 2009; Souli et al., 2008).

The clonal relatedness of the isolates enabled us to group them into four genotypes named A (15 isolates), B (eight isolates), C (nine isolates) and D (four isolates), in addition to unrelated single isolates. Comparisons of PFGE patterns with those from control strains belonging to European clones I, II and III showed no genetic relatedness. Analysis of their antibiotic resistance showed that (i) isolates from clone A were resistant to all antibiotics tested with the exception of colistin to which they remained susceptible and (ii) the majority of isolates belonging to groups B, C and D were susceptible only to carbapenems and colistin.

Molecular typing results indicated inter-hospital dissemination of carbapenem-resistant clone A, as identical pulsotypes were identified in different institutions in Cochabamba. This fact is alarming, as there are only a few drugs that are clinically available to treat infections caused by this multidrug-resistant pathogen.

Class 1 integrons, ranging in size from 540 to 1100 bp, were present in all strains. The predominant band pattern was a combination of 540 and 780 bp structures present in 32 isolates, in turn belonging to different groups. The
Table 1. MICs (μg ml⁻¹) of antibiotics with in vitro activity against A. baumannii clinical isolates. All isolates were resistant to amoxicillin, cefotaxime, ceftazidime, imipenem, and meropenem. V, Vietnam Hospital; G, Hospital Gastroenterologico Bellavista-Iquitos; C, Clinic Elliott.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC₆₀</td>
<td>MIC₉₀</td>
<td>Range</td>
<td>MIC₆₀</td>
<td>MIC₉₀</td>
</tr>
<tr>
<td>AMK, Amikacin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>GEN, gentamicin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>TOB, tobramycin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>SXT, trimethoprim/sulfamethoxazole</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>AMC, amoxicillin/clavulanic acid</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>AMP, ampicillin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>FEP, cefepime</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>CAZ, ceftazidime</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>CRO, ceftriaxone</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>IPM, imipenem</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>MEM, meropenem</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>TZP, piperacillin/tazobactam</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>CIP, ciprofloxacin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>NOR, norfloxacin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>CST, colistin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>RIF, rifampicin</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
</tr>
</tbody>
</table>

*AMK, Amikacin; GEN, gentamicin; TOB, tobramycin; SXT, trimethoprim/sulfamethoxazole; AMC, amoxicillin/clavulanic acid; AMP, ampicillin; FEP, cefepime; CAZ, ceftazidime; CRO, ceftriaxone; IPM, imipenem; MEM, meropenem; TZP, piperacillin/tazobactam; CIP, ciprofloxacin; NOR, norfloxacin; CST, colistin; RIF, rifampicin.
presence of integrons occurring with high frequency in these clinical isolates could be related to the resistance to aminoglycosides, as the genes encoding aminoglycoside-inactivating enzymes are often found on these genetic elements worldwide (Gallego & Towner, 2001).

Plasmids were found in 35 isolates, ranging in size from 2 to 40 kb. The most frequently detected genetic element was a 40 kb plasmid present in 15 isolates in group A (Fig. 1). Other plasmids of 2.5 kb (13 isolates), 11 kb (seven isolates), 5.8 kb (five isolates), 9 kb (two isolates), 28 kb (two isolates) and 14 kb (one isolate) were also detected.

As imipenem is the last therapeutic option when treating nosocomial infections caused by antibiotic-resistant A. baumannii isolates, we investigated further whether the presence of β-lactamas potential expressed by these isolates could confer their resistance to imipenem. No extended-spectrum β-lactamase-producing isolates were detected in this study, although blaCTX-M-15 and blaPER-2 genes were detected in a previous study carried out in Santa Cruz, another region of Bolivia (Celenza et al., 2006). This suggests that resistance to cephalosporins could be due to other mechanisms, such as the expression of chromosomal ADC β-lactamase, reduced membrane permeability caused by a decrease in expression of porin genes and/or an increase in the efficiency of efflux pumps.

Carbapenemase activity was detected in 70% of the isolates by the Hodge test, probably due to expression of the intrinsic OXA-51 carbapenemase or other acquired carbapenemases. Although they have been reported in A. baumannii from other Latin American countries (Sader et al., 2005), further PCR experiments detected no metallo-β-lactamase genes in our isolates.

The multiplex PCR detected the presence of the blaOXA-51-like gene in all A. baumannii strains except three isolates that were subsequently identified to be Acinetobacter 13TU by the gyrB multiplex PCR. In addition, an amplification band corresponding to the blaOXA-58 gene was detected in all isolates of the multidrug-resistant clone A group. Sequencing of the 843 bp amplicon showed 100% identity with the blaOXA-58 gene sequence described previously (Poirel et al., 2005) and the presence of an ISAba3 element. Southern blot analysis with a blaOXA-58-specific probe generated by PCR enabled us to localize this gene on the 40 kb plasmid. This plasmid was within the size range (10–150 kb) described by other authors (Bertini et al., 2006; Héritier et al., 2005; Marqué et al., 2005; Poirel et al., 2005; Wang et al., 2007).

Although the blaOXA-58 gene has also been detected in isolates from other Latin American countries, we believe that this is the first report of this gene in Bolivian clinical isolates. Our results support previous reports indicating the worldwide spread of the blaOXA-58 gene and highlight its importance in conferring carbapenem resistance among A. baumannii isolates from Latin America (Coelho et al., 2006; Higgins et al., 2010a; Kulah et al., 2010; Marqué et al., 2005; McCracken et al., 2009; Mendes et al., 2009; Papa et al., 2009).

In conclusion, this is the first report, to our knowledge, of carbapenem resistance in A. baumannii isolates from Bolivia associated with the presence of the blaOXA-58 gene. Detection of the antibiotic-inactivating enzyme in a multidrug-resistant clone and its expression is of great concern with regard to the spread of carbapenem resistance among hospitals in Bolivia.

ACKNOWLEDGEMENTS

We would like to thank Dr Jenny Pinto, Dr Fatima Funes and Dr Jenny Zamora from the Facultad de Bioquímica y Farmacia Cochabamba (Bolivia) for their assistance. We are also grateful to Dr Ramón Cisterna, Aurora Morla and Olvido Hernández from the Microbiology Service of Hospital de Basurto (Bilbao, Spain) for their help with the antibiotic analysis and Dr Vladimir Kaberdin (University of the Basque Country, Spain) and Bruno S. Lopes (Centre for Infectious Diseases, University of Edinburgh, UK) for critically reading the manuscript. This work has been supported by the AECID (Agencia Española de Cooperación y Desarrollo), Ministerio de Asuntos Exteriores, Spain (grant A/9758/07) and by a grant from the Oficina de Cooperación al Desarrollo, Vicerrectorado de Relaciones Internacionales (University of the Basque Country, Spain).

REFERENCES

