A novel class 1 integron array carrying \(\text{bla}_{\text{VIM-2}} \) genes and a new insertion sequence in a \(P. \text{aeruginosa} \) strain isolated from a Spanish hospital

\(P. \text{aeruginosa} \) is a pathogen commonly implicated in nosocomial infections. Carbapenems are an effective treatment option, but \(P. \text{aeruginosa} \) resistant to these agents are increasingly reported. The zinc-dependent metallo-\(\beta \)-lactamases (MBLs) are one of the most clinically important enzymes that hydrolyse carbapenems, penicillins and extended-spectrum cephalosporins, but not aztreonam (Walsh et al., 2005). Their activity is inhibited by the effect of metal chelators such as EDTA. The MBLs most frequently detected worldwide are the IMP and VIM types, which have been reported within genetic elements such as integrons (Walsh et al., 2005; Partridge et al., 2009). Integrons have the ability to capture, integrate and express gene cassettes involved in the resistance to different antimicrobial families (e.g. \(\beta \)-lactams, carbapenems and aminoglycosides) (Partridge et al., 2009). This facilitates the dissemination and co-selection of multiresistant \(P. \text{aeruginosa} \) strains and limits the therapeutic options (Bonomo & Szabo, 2006).

\(P. \text{aeruginosa} \) strain W37 was recovered from a urinary sample in a Spanish hospital in 2007. Susceptibility testing was performed by the disc-diffusion method (CLSI, 2010). This strain showed resistance to imipenem, meropenem, ticarcillin, ceftriaxone, cefotaxime, gentamicin, tobramycin and sulfonamides; intermediate resistance to cefpime, aztreonam and ciprofloxacin; and susceptibility to ceftazidime, amikacin and colistin. The MICs of imipenem (IPM) and meropenem (MEM), determined by the agar dilution method (CLSI, 2010), were \(\geq 256 \) and 64 mg l\(^{-1} \), respectively. The MBL Etest (AB bioMérieux) and the double-disc (IPM/0.5 M EDTA/MEM) (Lee et al., 2001) methods proved an MBL-positive phenotype in this strain.

Multilocus sequence typing (MLST) showed in \(P. \text{aeruginosa} \) W37 a new allelic combination of the seven sequenced housekeeping genes (\(\text{acsA6}, \text{aroE5}, \text{guaA6}, \text{mutL5}, \text{msdD4}, \text{ppsA94}, \text{trpE7} \)) that was registered and named ST973 in the MLST database (http://pubmlst.org/paeruginosa/) (Curran et al., 2004). This sequence type is a single-locus variant of ST641 and no clonal complex is yet described (Nemec et al., 2010).

MBL genes were detected and characterized by multiplex-PCR and subsequent sequencing (Ellington et al., 2007). The presence of class 1 and 2 integrons was determined by PCR, using primers targeting genes in the integron conserved segments (\(\text{intI1}, \text{intI2} \), and \(\text{gacEA1 + sulI} \)). Integron variable regions were analysed by PCR mapping and sequencing (Sàenz et al., 2004).

\(P. \text{aeruginosa} \) W37 harboured the \(\text{bla}_{\text{VIM-2}} \) gene and two class 1 integrons. One of these integrons contained only a \(\text{bla}_{\text{VIM-2}} \) gene cassette in its variable region, but the other one had a variable region of 5429 bp that included \(\text{bla}_{\text{VIM-2}} + \text{aac(6'-Ib')-Ib'} + \text{aadA1} \) gene cassettes followed by a new open reading frame (ORF) and another \(\text{bla}_{\text{VIM-2}} \) gene cassette (Fig. 1). The presence of two copies of the \(\text{bla}_{\text{VIM-2}} \) gene is remarkable in this last integron. The \(\text{aac(6')-Ib'} \) gene encodes the AAC(6')-Ib' aminoglycoside acetyltransferase, which has an amino acid substitution (Leu119→Ser) with respect to AAC(6')-Ib, and confers resistance to gentamicin, tobramycin, kanamycin and netilmicin, a typical phenotype of an AAC(6')-II enzyme (Lambert et al., 1994).

The new ORF (1059 bp) encoded a putative transposase of 352 amino acids which is 62% similar to the IS1618 transposase. This ORF was part of a new IS of 1216 bp, designated ISPa34 by IS Finder (http://www-is.biotoul.fr/). ISPa34 belongs to the IS110 family and IS1111 group, and it was inserted into the \(\text{attC} \) of the \(\text{aadA1} \) gene cassette, whose mobilization could be affected. According to the IS110 family characteristics, no direct target repeats are created by ISPa34 (Mahillon & Chandler, 1998).

The nucleotide sequence of the novel class 1 integron array determined in this study was deposited in the GenBank database with the accession number GU354325.

Several studies have described class 1 integrons containing the \(\text{bla}_{\text{VIM-2}} \) gene cassette (Walsh et al., 2005; Santos et al., 2010; Samuelsen et al., 2010; Hammami et al., 2010), but to our knowledge, this is the first report of the double detection of \(\text{bla}_{\text{VIM-2}} \) gene cassettes in the variable region of the same integron in \(P. \text{aeruginosa} \). In addition, the presence of a new insertion sequence in the surrounding environment could be implicated in the mobilization of these gene cassettes.

The polymorphisms of the promoter (Pc) responsible for the expression of inserted gene cassettes were characterized by PCR and sequencing in the two class 1 integrons of strain W37. The Pc hybrid 1 (PcH1) was detected in both integrons, characterized by the TGGACA and TAAACT sequences at the −35 and −10 hexamer positions, respectively. An in silico study has previously described (Jove et al., 2010) that the PcH1 variant is associated with weak expression of gene cassettes, and the resulting integrase with high excision activity, which favours the capacity for rearrangement of gene cassettes, in order to place the required gene cassette closer to PcH1.

The location of the class 1 integrons was studied by independent genomic DNA digestions with the nuclease S1 (8 U per plug) and the endonucleases I-CeuI and

The GenBank accession number for the nucleotide sequence of the novel class 1 integron array determined in this study is GU354325.
Spl (10 U per plug) (New England Biolabs), and subsequent PFGE separations. Bacterial DNA embedded in agarose plugs was prepared as described by Kaufmann (1998). The PFGE conditions used were as follows: pulse time ranging from 5 s to 45 s for 16 h after nuclease S1 digestion, from 50 s to 90 s for 22 h after I-CeuI digestion, and two ramps were used after Spl digestion, from 5 s to 15 s for 10 h and from 15 s to 45 s for another 10 h. All gels were run at 6 V cm⁻¹ and at 14 °C. Digested PFGE gels were analysed by Southern blotting and hybridization using blaVIM-2, intI1, ISPa34 and 16S rRNA gene probes. The blaVIM-2 and intI1 genes hybridized in two bands with sizes between 97 and 145.4 kb in the Spl-PFGE gel. DNA digestion with I-CeuI showed that the blaVIM-2, intI1, ISPa34 and 16S rRNA probes hybridized only with chromosomal DNA. A DNA plasmid extraction and subsequent hybridization was performed and this also confirmed that the integron is chromosomally located.

In summary, a novel class 1 integron that contains two copies of the blaVIM-2 gene and a new insertion sequence ISPa34 is reported. The accumulation of genes encoding MBL in P. aeruginosa strains is worrisome, especially when these structures could be mobilized by plasmids or transposons and transferred to other bacteria.

Acknowledgements

We thank Patricia Siguier for analysing the new ISPa34 (http://www-is.biotoul.fr/). The study did not receive financial support from third parties. M. de Toro has a pre-doctoral fellowship from the Ministerio de Ciencia e Innovacion, Instituto de Salud Carlos III, Spain (grant number F108/00506). V. Estepa has a pre-doctoral fellowship from the Universidad de La Rioja, Spain (grant number FPI-UR-09/16599009). Part of this study was presented at the XIV SEIMC Congress (Barcelona, Spain, 19–22 May 2010).

Beatriz Rojo-Bezares,1 Vanesa Estepe,2 Maria de Toro,1,2 Esther Undabellita,3 Inés Olarte,3 Carmen Torres1,2 and Yolanda Sáenz1

1Área de Microbiologia Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
2Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
3Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain

Correspondence: Yolanda Sáenz (ysaenz@riojasalud.es)

