Case Report

Correspondence
Amarela Lukić-Grlić
amarela.lukic.grlic@mef.hr

Case Report

Candida utilis candidaemia in neonatal patients

Amarela Lukić-Grlić,1,2 Emilija Mlinarić-Missoni,3 Ivanačica Škarić,2
Verica Važić-Babić3 and Ivan-Krešimir Svetec4

1Department of Medical Microbiology and Parasitology, University of Zagreb Medical School,
Šalata 3, 10 000 Zagreb, Croatia
2Sisters of Mercy University Hospital, Children’s Hospital Zagreb, Klaičeva 16, 10 000 Zagreb,
Croatia
3National Reference Centre for Diagnosis of Systemic Mycoses, Croatian National Institute of
Public Health, Rockefellerova 2, 10 000 Zagreb, Croatia
4Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology,
Pierottijeva 6, 10 000 Zagreb, Croatia

In recent years, an evident rise in the frequency of candidaemia caused by non-albicans Candida
species has been reported. In this paper we present three cases of clinically manifested
candidaemia caused by Candida utilis in neonatal patients hospitalized in the same neonatal
intensive care unit within a 6 month period. To the authors’ knowledge, only two cases of C. utilis
candidaemia have been reported in the literature to date, but neither of these involved newborns.
Clinical resolution and elimination of C. utilis from the blood were achieved using liposomal
ampotericin B or caspofungin in all patients.

Introduction

The frequency of candidaemia has been on the rise throughout the last few decades (Arendrup, 2010; Ascioglu
et al., 2002; Hajjeh et al., 2004). The reason for this is the improvement in medical treatment especially of immuno-
compromised individuals. Within the child population, the incidence of candidaemia is the highest among infants
younger than 3 years of age (Abelson et al., 2005), particularly in newborns (Arendrup, 2010; Hajjeh et al.,
2004). Children at the greatest risk of candidaemia are premature infants, especially those with very low birth
weight (<1500 g) and extremely low birth weight (<1000 g) hospitalized in neonatal intensive care units
(NICUs) (Benjamin et al., 2006; Saiman et al., 2001). Candida albicans is the most common causative agent of
candidaemia, although there is an evident rise in frequency of candidaemia caused by other, less-virulent species of
Candida (Colombo et al., 2003; Hajjeh et al., 2004; Hawkins & Baddour, 2003; Hazen 1995; Jabra-Rizk et al., 2005).

Case reports

Case 1

A male premature baby of 890 g birth weight was delivered
vaginally in the 27th week of gestation. Mechanical
ventilation was begun immediately due to infant respir-
atory distress syndrome and Curosurf [1.5 ml (120 mg)
once] was given. Antibiotic therapy also started on the first
day of the infant’s life (3 mg gentamicin daily, 10 mg
amoxicillin-clavulanic acid twice daily). On the fifth day of
life, due to sepsis of unknown cause, the gentamicin was
replaced with 20 mg meropenem twice daily. On the same
day, the infant developed a tension pneumothorax and so
thoracic drainage was set up. From the seventh day of life,
due to the isolation of C. albicans from tracheal aspirate
and stomach contents, prophylactic fluconazole (6 mg
kg⁻¹ twice per week) was given for the next 23 days.
Enteral nutrition with mother’s milk was gradually
introduced alongside total parenteral nutrition given by
umbilical catheter for 15 days, then afterwards by central
venous catheter (CVC) placed in the subclavian vein for
another 15 days. Anti-ulcer prophylaxis was carried out
with H2 blockers (1 mg twice daily) for 25 days. On the
30th day of life, the infant’s clinical condition worsened
and he became septic (25 mg C-reactive protein (CRP) 1⁻¹,
thrombocytopenia 59 × 10⁹ platelets l⁻¹). Blood samples
were drawn for bacterial and fungal cultures, and the CVC
was removed. Fluconazole treatment was discontinued,
and a trial of vancomycin (15 mg daily) and liposomal
ampotericin B (1 mg kg⁻¹) commenced. Blood cultures
revealed the presence of Enterococcus faecalis (vancomycin
was replaced with 15 mg amoxicillin–clavulanic acid three
times daily) and Candida utilis. By the third day of this
therapy, the blood cultures were negative. The infant was
much improved clinically by this point and treatment with

Abbreviations: CRP, C-reactive protein; CVC, central venous catheter;
NICU, neonatal intensive care unit; RAPD, random amplification of
polymorphic DNA.
liposomal amphotericin B (3 mg kg⁻¹) was continued for another 4 days (7 days in total). During hospitalization in the NICU *C. utilis* was never isolated from any surveillance culture of this patient.

**Case 2**

A female newborn of 2740 g birth weight born vaginally in the 39th week of gestation was diagnosed with intestinal atresia. On the third day of life, surgical reparation of the ileum was performed while on the fourth day of life a CVC was placed into her subclavian vein. Anti-ulcer prophylaxis was conducted using H2 blockers (3 mg three times daily) for 16 days. Antibiotic therapy commenced on the second day of life (7 mg gentamicin twice daily and 20 mg metronidazole twice daily). On the eighth day of life, the newborn became clinically septic (29 mg CRP l⁻¹, thrombocytes (platelets) dropped to 116 × 10⁹ l⁻¹). Multiple blood cultures were drawn for testing for bacteria and fungi, and were found to be positive for extended-spectrum β-lactamase-producing *Klebsiella pneumoniae*. Gentamicin treatment was discontinued and meropenem treatment (75 mg three times daily) was instituted. On the ninth day of treatment, meticillin-resistant *Staphylococcus epidermidis* was isolated from a blood culture, and therapy with meropenem and metronidazole was continued. On the 11th day of treatment with this regimen, *C. utilis* was isolated from the blood. On the 12th day of life the infant’s clinical condition worsened and she became febrile with a CRP of 102 and a drop in thrombocyte count from 400 × 10⁹ to 225 × 10⁹ l⁻¹. The blood cultures taken on the 22nd and 24th day were still positive for *C. utilis*, and caspofungin (1 mg kg⁻¹) was introduced into the treatment regimen. During the treatment with caspofungin improvement was noted both clinically and on laboratory tests. After 6 days of caspofungin treatment the blood cultures became sterile and caspofungin treatment was maintained for another 15 days (21 days in total). During hospitalization in the NICU, *C. utilis* was not found in any surveillance culture.

**Methods**

Blood cultures drawn from the patients were cultured in a BACTEC 9050 system (Becton Dickinson) using BACTEC PedsPlus/F culture vials. Positive vials were Gram-stained and subcultured for organism identification on horse’s blood and Sabouraud glucose agar. Preliminary identification of *C. albicans* was done by germ tube test in the clinical microbiological laboratory (Microbiological Laboratory, Department of Diagnostic Laboratories, Children’s Hospital Zagreb, Zagreb, Croatia).

Yeasts isolates were routinely sent for confirmation of identification, or identification and *in vitro* antifungal susceptibility testing in the National Reference Centre for Diagnosis of Systemic Mycoses. Isolates were identified using the ID 32 C (bioMérieux) yeast identification system and by morphology on cornmeal agar. *In vitro* antifungal susceptibility testing was performed by the ATB FUNGUS 3 (bioMérieux) microdilution method and the results were interpreted according to Clinical and Laboratory Standards Institute recommendations.

Isolation of yeast genomic DNA for random amplification of polymorphic DNA (RAPD) analysis was performed starting from a 3 ml stationary-phase culture grown in Sabouraud glucose medium using the procedure described by Philippens et al. (1991). The extracted DNA was then used as a template in RAPD-PCRs, which were performed according to Gardiner et al. (2002). The PCR products were analysed on a 1.5% (w/v) agarose gel with 1 × TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA) and ethidium bromide (0.5 mg l⁻¹) staining. A DNA of bacteriophage λ cut with *Hind*III was used as a molecular size standard.
Discussion

*C. utilis* has long been known for its industrial applications (Prior et al., 1980), but it has rarely been described as an infectious agent in humans (Alsina et al., 1988; Bougnoux et al., 1993; Hazen et al., 1999; Shih et al., 1999). To the best of our knowledge, only two cases of *C. utilis* candidaemia have been reported in the literature to date (Alsina et al., 1988; Bougnoux et al., 1993). The first patient was a 5-year-old male with AIDS who had developed a CVC-associated transient candidaemia, and the second patient was a 68-year-old immunocompetent man without a CVC. Other reported clinical manifestations of infection with this pathogen are chronic urinary tract infections (Hazen et al., 1999) and keratitis (Shih et al., 1999).

We present three cases of transient *C. utilis* candidaemia in newborns hospitalized in the same NICU, all within a 6 month period in 2008. In all of the patients, a significant number of risk factors for the development of candidaemia co-existed. They were all newborns, all were on antibiotic therapy, parenteral nutrition and anti-ulcer prophylaxis, all had a CVC in place, underwent a surgical procedure at birth, and two of them were on artificial ventilation. Other authors have reported candidaemia cases in neonatal patients associated with the same risk factors, pointing out prematurity and low birth weight as risk factors either for acquiring infection or for a bad outcome of infection (Asticcioli et al., 2007; Benjamin et al., 2003, 2006; Fridkin et al., 2006).

*C. utilis* was the single cause of the bloodstream infection only in one newborn. In the other two newborns, *C. utilis* candidaemia was preceded by bacteraemia caused by Gram-negative and Gram-positive micro-organisms or *C. utilis* and Gram-positive bacteria caused simultaneous bloodstream infection. The duration of candidaemia in our patients differed in length from 2 to 14 days. All previously discussed facts would suggest low virulence of this *Candida* species.

Clinically manifested candidaemia caused by *C. utilis* developed regardless of the treatment with fluconazole, either prophylactically or therapeutically. Although all bloodstream isolates of *C. utilis* were susceptible to fluconazole in vitro (Table 1), clinical resolution and elimination of fungi from the blood were only achieved using liposomal amphotericin B or caspofungin. A very similar situation was described in the literature, when the sterility of blood cultures was obtained using amphotericin

<table>
<thead>
<tr>
<th>Case</th>
<th>Isolate</th>
<th>Origin</th>
<th>Antifungal drug MIC (μg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphotericin B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>BC</td>
<td>&lt;0.5</td>
</tr>
</tbody>
</table>

BC, Blood culture; SC, surveillance culture.

Fig. 1. RAPD fingerprints of *C. utilis* isolates. 1–13, *C. utilis* isolates; 14, *C. albicans* (ATCC 16231); 15, *Candida parapsilosis* (ATCC 22109); S, molecular size standard.
B, despite the fact that C. utilis isolates showed in vitro susceptibility to fluconazole (Bougnoux et al., 1993).

C. utilis was not isolated from any surveillance culture from the digestive, respiratory and urogenital tract, nor from the removed CVCs, except from the surveillance culture from one patient’s groin skin. All 13 C. utilis isolates from our patients (12 blood culture isolates and 1 from the surveillance culture) showed the same RAPD-PCR banding pattern (Fig. 1), indicating them as being clonally related. These findings could suggest the environment and/or hospital staff as the potential source of the infection among our patients (Asticcioli et al., 2007).

There was a time span of 73 to 86 days between each of the three cases of candidaemia. Given this circumstance, we did not search for the source of infection. During the observed 6 month period, other newborn babies with very similar risk factors for developing candidaemia were also hospitalized, and were nursed by the same hospital staff. The efficient application of infection control measures could be the reason why these three cases remained sporadic. By presenting these cases, our intention is to point out C. utilis as a possible cause of candidaemia among the hospitalized newborns, as well as our experience in successful treatment of the patients with liposomal amphotericin B or caspofungin.

References


