Pathogenic potential of *Escherichia coli* from polymicrobial urinary tract infections

In a recent issue of this journal, Croxall *et al.* (2011) described in their work on polymicrobial urinary tract infections (UTIs) data about the pathogenic potential of *Escherichia coli* isolates. I have several comments on their study regarding the method used by the authors for the research that I think has invalidated the results, which are in discord with the literature. I also believe that the authors omitted consideration of some previous studies that described basic findings on the connection between *E. coli* pathogenicity and the susceptibility to the antibiotic quinolone. In addition, I think that a more critical view should have been taken in the interpretation of the results.

Croxall *et al.* (2011) showed an increased human pathogenic potential of *E. coli* strains isolated from polymicrobial urine, with respect to those from monomicrobial urine, among elderly patients. Although this field is undervalued by the scientific community, from a diagnostic and therapeutic point of view it is of high interest and importance. Therefore, I believe the results reported by Croxall *et al.* (2011) warrant several comments about the method chosen by the authors.

Firstly, urine samples were assigned to five different categories, where polymicrobial samples were subdivided into male, female, non-catheterized and catheterized samples, and monomicrobial samples were not divided. These categories were used for the analysis of the prevalence of each of the main bacterial species responsible for UTIs, and the relative results showed data in accordance to the literature (Foxman & Brown, 2003; Ronald, 2003), both in the comparison between genders, non-catheterized and catheterized subjects, and polymicrobial and monomicrobial infections, supporting the choice of method. However, the susceptibility to antibiotic drugs was instead presumably evaluated (since results are not shown) regardless of the aforementioned categories of patients. Also, the authors considered all micro-organisms and all drugs together. Therefore, the analysis led to comparable levels of antibiotic resistance between mixed and monomicrobial culture samples. This finding is in discord with the literature, in which it is well documented that mixed urinary infections are the most refractory to most front-line antibiotics. This phenomenon is acknowledged to be due to the great prevalence of mixed infections in compromised patients, particularly in those who were catheterized (Houdouin *et al.*, 2007), among whom the highest prevalence of resistance towards antibiotics does exist (Domann *et al.*, 2003; Siegman-Igra *et al.*, 1994).

Secondly, the same analysis led to a prevalence of ciprofloxacin-resistant *E. coli* strains in polymicrobial samples, with respect to monomicrobial samples. This finding, although not discordant with data in the literature, is in discord with the results of a recent study by myself and my colleagues (Saverino *et al.*, 2011), and contrasts with the other important point emerging from the work by Croxall and colleagues, which is the increased pathogenic potential of *E. coli* strains derived from polymicrobial UTIs. In their work on bacterial pathogenicity, the authors listed isolate resistance to a wide range of antibiotics and they did not refer to the fundamental relationship between the few virulence factors of certain *E. coli* strains, and their quinolone and fluoroquinolone resistance, nor to the still topical debate concerning underlying mechanisms (Platell *et al.*, 2010; Takahashi *et al.*, 2009), started by Johnson in 2005 (Johnson, 2005). In the opinion of myself and my collaborators, this basic biological correlation and medical finding cannot be left out of consideration any more. Already in a basic review about virulence factors in *E. coli* cited by the authors (Johnson, 1991), Johnson doubted that the currently defined virulence factors, at that time, could be sufficient in themselves to transform an avirulent organism into a pathogen, demonstrating that other as-yet-undefined virulence properties awaited discovery. Following the findings made in previous studies, some of which were referenced by Croxall and colleagues (Anderson *et al.*, 2003; Mulvey *et al.*, 2001), we need to think that genes encoding proteins involved in *E. coli* invasivity, and involved in increasing the pathogens’ fitness and adaptability, either belong to the same pathogenicity islands of those mostly investigated regarding the above-mentioned relationship (Bruszkiewicz *et al.*, 2006), or are susceptible to the same mutational event suggested for the latter (i.e. *fimA, papC, hlyA, cnf1, iss, irtA* etc.). If the authors took this ascertained correlation into consideration, their results could be viewed with a more critical eye and with doubt on the real significance of their findings. In my opinion, finding *E. coli* in urinary polymicrobial samples as the most pathogenic isolates and simultaneously as the isolates most refractory to fluoroquinolone, and finding ciprofloxacin-resistant *E. coli* more frequently in polymicrobial samples than in routine clinical isolates, depends on the kind of analysis carried out. In fact, the analysis by Croxall *et al.* (2011) only considered elderly, and therefore compromised, subjects, and did not separate catheterized from the non-catheterized patients. In our aforementioned study (Saverino *et al.*, 2011), we also obtained, among polymicrobial UTIs, results in contrast with the literature, i.e. other than an enhanced pathogenic capability of quinolone/fluoroquinolone-susceptible *E. coli*, with respect to the resistant strains, a capability to suppress interleukin-8 urothelial production, a significant correlation between quinolone/fluoroquinolone *E. coli* susceptibility and mixed cultures. However, we expected this discrepancy and better still we highlighted...
the paradox emerging from the latter
and from the
contemporary connection between
quinolone/fluoroquinolone-resistant
E. coli and compromised hosts, ‘known to
be frequently affected by polymicrobial
UTIs’). In our work, in which urine from
catheters were excluded, we tried to
explain this paradox bearing in mind that
pathogenesis underlying polymicrobial
UTIs in a compromised host could be
completely different from that in a non-
compromised host, in whom mixed
urinary infections would seem to be due to
the pathogenicity of certain bacteria.
Lastly, as already mentioned above, in their
work the authors listed the antimicrobial
susceptibility phenotype of the isolates.
Our interpretation of Croxall and
colleagues study method is strengthened by
data that they obtained, even if not
statistically significant, concerning similar
results for quinolone/fluoroquinolone and
trimethoprim resistance, and only in E. coli
isolates. The underlying mechanisms of
resistance are known to be mostly different
for each antibiotic and, to a lesser extent,
also for each bacterial species. Particularly,
it is well known that among several
mechanisms by which bacteria can develop
resistance to trimethoprim, clinically the
most important of these is the plasmid-
encoded production of additional
dihydrofolate reductases, and such
resistance is found in both Gram-positive
and Gram-negative species (Thomson,
1993). Given the prevalence of
polymicrobial UTIs in the compromised
host, a greater resistance of most isolate
species to most of the antibacterial drugs
would have been expected in mixed than
in monomicrobial UTIs.

Gabriella Piatti

Section of Microbiology, Department of
Surgical and Diagnostic Sciences,
University of Genova, Genoa, Italy

Correspondence: Gabriella Piatti
(piatti@unige.it)

Anderson, G. G., Palermo, J. J., Schilling, J. D.,
Intracellular bacterial biofilm-like pods in
Bruszskiewicz, E., Brüggemann, H.,
Liesegang, H., Emmert, M., Olslächger, T.,
Nagy, G., Albermann, K., Wagner, C.,
Buchrieser, C. & other authors (2006). How to
become a uropathogen: comparative genomic
analysis of extraintestinal pathogenic Escherichia
coli strains. Proc Natl Acad Sci U S A 103,
12879–12884.
Croxall, G., Weston, V., Joseph, S., Manning, G.,
human pathogenic potential of Escherichia coli
from polymicrobial urinary tract infections in
comparison to isolates from monomicrobial
Domann, E., Hong, G., Imirzalioglu, C.,
Turschner, S., Kühle, J., Watzel, C., Hain, T.,
independent identification of pathogenic
bacteria and polymicrobial infections in the
genitourinary tract of renal transplant recipients.
J Clin Microbiol 41, 5500–5510.
of urinary tract infections: transmission and risk
factors, incidence, and costs. Infect Dis Clin
Houdouin, V., Bonacorsi, S., Mahjoub-Messai,
F., Mariani-Kurkdjian, P., Bidet, P., Sebag, G.,
Phylogenetic groups and virulence factors of
Escherichia coli strains causing pyelonephritis in
children with and without urinary tract
Escherichia coli urinary tract infection. Clin
Microbiol Rev 4, 80–128.
6221.
Mulvey, M. A., Schilling, J. D. & Hultgren, S. J.
(2004). Establishment of a persistent Escherichia
coli reservoir during the acute phase of a bladder
Platell, J. L., Cobbold, R. N., Johnson, J. R. &
Trot, D. J. (2010). Clonal group distribution of
fluoroquinolone-resistant Escherichia coli among
humans and companion animals in Australia.
infection: traditional and emerging pathogens.
Dis Mon 49, 71–82.
Saverino, D., Schito, A. M., Mannini, A., Penco,
fluoroquinolone susceptibility in Escherichia coli
correlates with human polymicrobial bacteriuria
and with in vitro interleukine-8 suppression.
Siegmans-Igra, Y., Kulka, T., Schwartz, D. &
Konforti, N. (1994). Polymicrobial and
monomicrobial bacteraemic urinary tract
Takahashi, A., Muratani, T., Yasuda, M.,
Takahashi, S., Monden, K., Ishikawa, K., Kyiota,
H., Arakawa, S., Matsumoto, T. & other authors
(2009). Genetic profiles of fluoroquinolone-
resistant Escherichia coli isolates obtained from
patients with cystitic phylogeny, virulence
factors, PAIusp subtypes, and mutation
Thomson, C. J. (1993). Trimethoprim and
brodiamprin resistance of gram-positive and

DOI 10.1099/jmm.0.031138-0

Authors’ reply to ‘Pathogenic potential of Escherichia coli from
polymicrobial urinary tract infections’

On behalf of the authors of our recent
publication on the pathogenesis of
Escherichia coli from polymicrobial urinary
tract infections (UTIs) (Croxall et al.,
2011), we present a response to the
correspondence paper by Gabriella Piatti
(Piatti, 2011). We thank the author for
their interest in our work, and especially
welcome their comment on the
importance of studying such infections.
We also hereby attempt to clarify some
points of confusion in the author’s
interpretation of the data displayed in the
initial publication.
Piatti begins by stating that our analysis of
the antimicrobial resistance data were
(probably) performed regardless of patient
group. We clearly state in our manuscript
that there was no difference in levels of
antimicrobial resistance between
polymicrobial and monomicrobial
samples. As there was no statistically
significant difference we chose not to
present that data in detail given the
amount of data we had to present on what
we considered our significant findings,