Transmission of a *Klebsiella pneumoniae* clone harbouring genes for CTX-M-15-like and SHV-112 enzymes in a neonatal intensive care unit of a Kuwaiti hospital

Ali A. Dashti,1 Mehrez M. Jadaon,1 Huda H. Gomaa,2 Bobby Noronha3 and Edet E. Udo3

1Department of Medical Laboratory Sciences, Faculty of Allied Health Science, Health Sciences Centre, Kuwait University, Kuwait
2Microbiology Laboratory, Al Jahra Hospital, Kuwait
3Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait

INTRODUCTION

The excessive use of the oxyimino-cephalosporins in clinical practice has resulted in *Klebsiella* species and other members of the *Enterobacteriaceae* showing diminished susceptibility to them (Du Bois *et al.*, 1995; Sanders *et al.*, 1996; Heritage *et al.*, 1999). Resistance to third-generation cephalosporins in these isolates is largely due to the production of extended-spectrum β-lactamase (ESBL) enzymes, which hydrolyse oxyimino-cephalosporins that are inhibited by clavulanic acid (Bradford, 2001). These enzymes are derived from the TEM-1/2 and SHV-1 family of β-lactamases (Bradford, 2001; Jacoby, 2006). The epidemiology of ESBLs has undergone dramatic changes in recent years with the emergence and spread of the CTX-M-type enzyme worldwide (Bradford, 2001; Bonnet, 2004; Paterson & Bonomo, 2005). The CTX-M enzyme was initially described in Germany and Argentina (Bonnet, 2004; Paterson & Bonomo, 2005), but has now become widespread in both healthcare and community settings in...
Europe, Asia, South America and the USA (Canton & Coque, 2006). The spread of CTX-M enzymes in healthcare environments is suspected to be due to the spread of multiple clones, as well as the spread of mobile genes among unrelated strains (Canton & Coque, 2006). It is also possible that the enzymes have been introduced from the community into healthcare settings as the prevalence of faecal carriers of CTX-M-producing organisms has increased in the community (Valverde et al., 2004; Ben-Ami et al., 2006).

ESBL-producing strains of the Enterobacteriaceae have been reported to cause outbreaks of infections (Naseer et al., 2007; Shenoy et al., 2007) leading to serious antibiotic management concerns (Jonathan, 2005). Risk factors have been associated with the acquisition of ESBL-producing organisms are usage of central venous or arterial catheters, emergency intra-abdominal surgery, and lung or gastrointestinal tract pathologies (Paterson et al., 2003).

The distribution of CTX-M enzymes varies among countries. For example, CTX-M-9 and CTX-M-14 are common in Spain, CTX-M-1 is prevalent in Italy and CTX-M-2 is prevalent in most countries in South America, Japan and Israel, whereas CTX-M-15 is distributed worldwide (Canton & Coque, 2006). In the Arabian Gulf countries (the Gulf Cooperation Council Countries), information on the types of ESBL is scanty (Sonnevend et al., 2006), although ESBL-producing members of the Enterobacteriaceae have been reported in Saudi Arabia (Panhotra et al., 2004; Kader & Angamuthu, 2005; El-Khizzi & Bakhshewain, 2006; Kader et al., 2007), Kuwait (Dimitrov et al., 2004; Jamal et al., 2005; Dashti et al., 2006; Dashti & West, 2007), Oman (Rafay et al., 2007, Bahrain (Wallace et al., 1995) and the United Arab Emirates (Sonnevend et al., 2006; Al-Zarouni et al., 2008). Despite their widespread distribution, the prevalence of ESBL-producing organisms remains underestimated because a large number of laboratories do not perform routine tests that specifically detect ESBLs. In this study, we report on the isolation of CTX-M-15-like- and SHV-112-producing Klebsiella pneumoniae from neonates and healthcare workers in a neonatal intensive care unit (NICU) in Al Jahra Hospital in Kuwait.

METHODS

Bacterial isolates. Ten isolates of ESBL-producing K. pneumoniae were included in the study. All samples were obtained from Al Jahra Hospital, Kuwait, a 600-bed general hospital that serves a population of approximately 200,000, with 25 wards and a 53-bed NICU. The samples were eight isolates obtained from blood cultures from seven neonates, and two isolates from the fingers of two healthcare workers. The samples were collected between 2 February and 4 March 2006, except for one isolate, which was obtained from a blood culture of a neonate in the NICU in August 2005. Isolates were identified at the microbiology laboratory of Al Jahra Hospital using traditional bacteriological methods and biochemical tests, using the Vitek 2 GNI card following the manufacturer’s recommendations (bioMérieux). The isolates were stored at −80 °C in 15% glycerol (v/v) in brain-heart infusion broth. They were subcultured on nutrient agar and incubated aerobically at 37 °C for 24 h.

Antibiotic susceptibility testing. Antibiotic susceptibility testing was performed by the disc-diffusion method on Mueller–Hinton agar, which was incubated at 35 °C for 18 h. The results were interpreted according to the current guidelines of the Clinical Laboratory Standards Institute (Naseer et al., 2007). The following antibiotics were tested: ampicillin, piperacillin, piperacillin–tazobactam, amoxicillin–clavulanate, cephalothin, cefotaxime, ceftriaxone, cefoxitin, cefazidime, gentamicin, amikacin, streptomycin, trimethoprim–sulfamethoxazole, ciprofloxacin, chloramphenicol and imipenem. Escherichia coli strain ATCC 25922 was used for quality control.

Detection of ESBL production. ESBLs were detected using the disc approximation and double-disc synergy methods and confirmed with cefotaxime and ceftazidime Etest ESBL strips (AB Biodisk). For the disc approximation test, clavulanate diffusion from an amoxicillin–clavulanate (AMC30) disc was used to test for synergy with cefotaxime, ceftazidime, cefuroxime, cefepime and cefixime (Oxoid) as described previously (Sonnevend et al., 2006). The double-disc synergy test, a ceftazidime disc (30 μg) was placed 30 mm away from a disc containing amoxicillin–clavulanate (60/10 μg). ESBL production was considered positive when an enhanced zone of inhibition was visible between the β-lactam and β-lactamase inhibitor-containing discs (Cormican et al., 1996; Livermore & Yuan, 1996). For the Etest, ESBL strips containing ceftazidime and ceftazidime–clavulanate and strips containing cefotaxime and cefotaxime–clavulanate were used to determine the MIC ratio according to the manufacturer’s instructions (AB Biodisk). Cultures were incubated aerobically at 37 °C for 18–24 h.

Amplification of ESBL genes. The presence of β-lactamase genes was investigated by PCR assays. Primers used to amplify the blaTEM,1 gene were blaTEM1 (5′-CTGGGAAACCGAACTGATG-3′) and blaTEM2 (5′-GGGCTATCCGCGAATATT-3′). Primers used to amplify the blaSHV gene were blaSHV1 (5′-ATGAGTATCTACAC-ATTTCCG-3′) and blaSHV2 (5′-CCTTCTATTTCCAGTGAGG-3′) (Hanson et al., 1999). Sequences for the blaCTX-M-1 gene primers were 5′-GACGATGTCACTGGCTGAGC-3′ and 5′-AGCCCCGAGCTT-CATACA-3′. The TEM and CTX-M-1 primers were prepared in house. PCR conditions for the SHV gene comprised an initial denaturation step for 5 min at 95 °C, followed by 32 cycles of 94 °C for 1 min, 57 °C for 1 min and 70 °C for 1 min, with a final extension step at 72 °C for 10 min. For TEM, the amplification cycle consisted of 5 min at 95 °C, followed by 32 cycles of 94 °C for 30 s, 55 °C for 1 min and 72 °C for 1 min, with extension at 72 °C for 10 min. For CTX-M, the amplification cycle consisted of 5 min at 94 °C, followed by 32 cycles of 94 °C for 30 s, 55 °C for 1 min and 72 °C for 1 min, with extension at 72 °C for 10 min. The amplifications were performed in a programmable PCR thermal cycler (Perkin Elmer). E. coli strain ATCC 25922 was used as a negative control in all PCR assays. The positive control for SHV was K. pneumoniae 6064, whilst the positive control for TEM and CTX-M was E. coli 971.

DNA sequencing. Amplified PCR products for each of the blaTEM, blaSHV and blaCTX-M genes were sent for analysis by an automated DNA sequencing system in the Research Core Facility Laboratory, Health Science Center, Kuwait University. PCR products for the three different genes were purified by ethanol precipitation. Twenty-five microlitres of template suppression reagent was added to the pellet, mixed and finally heated for 2 min at 95 °C. One microlitre of each PCR product from the previous step was mixed with 3.2 pmol of either a forward or a reverse primer for the three pairs of primers used in the study, and for each sample 8 μl of a dye terminator ready sequence reaction mix was added (Prism Ready Reaction Dye-Deoxy
Terminator Cycle Sequencing kit (Perkin Elmer). The sequencing PCR was then carried out for 30 cycles of 96 °C for 20 s, 50 °C for 20 s and 60 °C for 4 min. The products were cleaned again as described above and kept on ice until the sequencing reaction was run on an automated ABI3100 DNA sequencer (Applied Biosystems). The resulting DNA sequences were compared with K. pneumoniae genes from GenBank using BLAST (http://www.ncbi.nlm.nih.gov/blast).

PFGE. All isolates were analysed by PFGE using a standardized PulseNet protocol as described previously (Ribot et al., 2001). Genomic DNA was digested with 40 U XbaI restriction endonuclease and separated in a CHEF-DR III electrophoresis system (Bio-Rad Laboratories). The running parameters were as follows: initial pulse 5 s and final pulse 40 s, at 6 V cm\(^{-1}\) for 20 h at 14 °C. The gels were stained with ethidium bromide and photographed under UV transillumination. Banding patterns were compared visually and interpreted based on published criteria (Tenover et al., 1995).

RESULTS

The sources and characteristics of the K. pneumoniae isolates are presented in Table 1. All 10 isolates were resistant to cefotaxime, ceftazidime, ceferpine, gentamicin, tobramycin and ciprofloxacsin but susceptible to tetracycline and trimethoprim–sulfamethoxazole. They were confirmed as ESBL producers using a Vitek 2 AST N020 card, a disc-approximation test, double-disc diffusion and Etest ESBL strips. Figs 1 and 2 show the positive ESBL results obtained using the different test methods.

All 10 K. pneumoniae isolates were screened for the presence of the \(\beta\)-lactamase genes \(\text{bla}\)\(_{\text{SHV}}\), \(\text{bla}\)\(_{\text{TEM}}\) and \(\text{bla}\)\(_{\text{CTX-M}}\) by PCR. The results showed that all 10 isolates yielded positive results for \(\text{bla}\)\(_{\text{CTX-M}}\), \(\text{bla}\)\(_{\text{SHV}}\) and \(\text{bla}\)\(_{\text{TEM}}\). The results of amplification of the products of the \(\text{bla}\)\(_{\text{TEM}}\) (858 bp), \(\text{bla}\)\(_{\text{SHV}}\) (308 bp) and \(\text{bla}\)\(_{\text{CTX-M}}\) (499 bp) genes are presented in Fig. 3(a–c), respectively.

The amplified products of the \(\text{bla}\)\(_{\text{TEM}}\), \(\text{bla}\)\(_{\text{SHV}}\) and \(\text{bla}\)\(_{\text{CTX-M}}\) genes were sequenced and their sequences were compared with ESBL sequences in GenBank to determine the ESBL types. The results of BLAST searches revealed that the TEM sequences had 100% identity to TEM-1 sequences in GenBank. Similarly, the product of \(\text{bla}\)\(_{\text{CTX-M}}\) had 100% identity to the CTX-M-15 enzyme. As only 499 bp of the gene was sequenced, we termed it CTX-M-15-like. The \(\text{bla}\)\(_{\text{SHV}}\) amplification product showed 100% identity to the SHV-112 enzyme. SHV-112 has an amino acid change at position 253 of the protein product, in which asparagine (AAT) is changed to aspartic acid (GAT).

All 10 K. pneumoniae isolates were characterized further by typing using PFGE to ascertain their genetic relatedness. The results presented in Fig. 4 showed that they all had identical banding patterns, including those from the two healthcare workers and the isolate obtained in 2005 (not shown).

Table 1. Characteristics of K. pneumoniae isolates

<table>
<thead>
<tr>
<th>Patient</th>
<th>Source</th>
<th>Date</th>
<th>Age/sex</th>
<th>Diagnosis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blood</td>
<td>2/2/2006</td>
<td>4 days/M</td>
<td>PT (25 weeks)</td>
</tr>
<tr>
<td>2</td>
<td>Blood</td>
<td>6/2/2006</td>
<td>5 days/M</td>
<td>PT, RDS</td>
</tr>
<tr>
<td>3</td>
<td>Blood</td>
<td>7/2/2006</td>
<td>5 days/M</td>
<td>PT, RDS</td>
</tr>
<tr>
<td>4</td>
<td>Blood</td>
<td>NS</td>
<td>5 days/M</td>
<td>PT, RDS</td>
</tr>
<tr>
<td>5</td>
<td>Blood</td>
<td>17/2/2006</td>
<td>17 days/F</td>
<td>PT, RDS</td>
</tr>
<tr>
<td>6</td>
<td>Blood</td>
<td>4/3/2006</td>
<td>32 days/F</td>
<td>PT, RDS</td>
</tr>
<tr>
<td>7</td>
<td>Blood</td>
<td>18/2/2006</td>
<td>NS/F</td>
<td>RDS</td>
</tr>
<tr>
<td>8</td>
<td>Blood</td>
<td>7/8/2005</td>
<td>6 days/F</td>
<td>–</td>
</tr>
<tr>
<td>S27</td>
<td>Finger</td>
<td>–</td>
<td>Adult/F</td>
<td>IC</td>
</tr>
<tr>
<td>S30</td>
<td>Finger</td>
<td>–</td>
<td>Adult/F</td>
<td>IC</td>
</tr>
</tbody>
</table>

NS, Not specified.
*PT, Preterm birth; RDS, respiratory disease syndrome; IC, infection control.

Fig. 1. Results of a disc-approximation test showing a positive ESBL reaction between amoxicillin–clavulanate and ceftazidime discs.

Fig. 2. ESBL detection by a double-disc diffusion test showing clear zones of inhibition for all antibiotics tested.
DISCUSSION

This study presents evidence that a clone of ESBL-producing *K. pneumoniae* caused bloodstream infections among pre-term babies in a NICU of a Kuwaiti hospital. ESBL-producing *K. pneumoniae* has also been reported to cause outbreaks of infections in NICUs in other countries (Mantilla *et al.*, 2006; Shenoy *et al.*, 2007; Kristof *et al.*, 2007). Although susceptible to tetracycline and trimethoprim–sulfamethoxazole, the *K. pneumoniae* clone presented here was multiresistant, with resistance to cefotaxime, ceftazidime, cefepime, gentamicin, tobramycin and ciprofloxacin, thereby compromising the use of extended-spectrum cephalosporins, quinolones and aminoglycosides as therapeutic options. Similarly, Jain *et al.* (2003) showed that ESBL-producing organisms were resistant to ampicillin, cotrimoxazole, tetracycline and gentamicin (Jain *et al.*, 2003).

PFGE analysis revealed that all 10 isolates, including those from the neonates and healthcare workers, were identical, indicating that a single clone of *K. pneumoniae* was involved. This suggests that the two healthcare workers either acquired the bacteria from the neonates or may have been involved in its transmission at some point. The role of healthcare workers in the transmission of outbreak strains...
is well documented in the literature (Heritage et al., 1999). Furthermore, the finding that a K. pneumoniae strain isolated from a neonate who was admitted to the facility in 2005 was identical to the isolates that were obtained in 2006 implies that the strain had been introduced into the facility prior to 2006 when more cases were found. This suggests that, in addition to the possible contribution of healthcare workers in its transmission, the environment may also have contributed to its maintenance in the NICU. Unfortunately, no isolate from the environment was available for comparison with the current outbreak strain.

DNA amplification and sequencing of the amplified ESBL genes from the 10 isolates revealed that all isolates contained the genes for TEM-1, CTX-M-15 and SHV-112. Since the description of ESBL enzymes in the 1980s (Huang et al., 2006), ESBL-producing members of the Enterobacteriaceae, especially E. coli and K. pneumoniae, have been reported to cause serious infections in the community as well as in hospitals in different parts of the world (Pitout et al., 2005; Huang et al., 2006; Lee et al., 2006; Naseer et al., 2007; Mendonça et al., 2007; Rodriguez-Baño et al., 2006), with significant economic costs (Lee et al., 2006; Schwaber et al., 2006). However, in recent years, organisms producing the CTX-M-15 enzyme have become more widespread in several countries (Livermore & Hawkey, 2005; Lavollay et al., 2006; Naseer et al., 2007; Valenzuela de Silva et al., 2006; Mendonça et al., 2007) and have also been reported in isolates obtained in Kuwait (Sonnevend et al., 2006). It is remarkable that all 10 isolates contained genes for three ESBLs, highlighting the growing complexity of antibacterial resistance problems. It is interesting that these isolates were positive for a novel SHV enzyme (SHV-112) that was recently detected in K. pneumoniae isolates from another hospital in Kuwait (A. A. Dashhi and M. M. Jadaon, unpublished results; GenBank accession no. EU477409).

SHV-112 has an A → G change at position 253 of the protein product, in which asparagine (AAT) is changed to aspartic acid (GAT). The detection of SHV-112 in these isolates suggests that SHV-112 had been present in K. pneumoniae in Kuwait at least since 2005, long before it was detected in 2008, and that it may be widespread in Kuwaiti hospitals. An extensive screening of K. pneumoniae and other ESBL-producing members of the Enterobacteriaceae is necessary to establish the prevalence of this novel enzyme in bacterial isolates from different Kuwaiti hospitals.

In conclusion, the results of this study have demonstrated the transmission of a clone of ESBL-producing K. pneumoniae among neonates and healthcare workers in a NICU in Kuwait that may have emerged 5 years previously. Further studies are needed to determine whether this clone is also spreading in other Kuwaiti hospitals.

ACKNOWLEDGEMENTS

The authors wish to thank Mr Berneesh T. Jose and Ms Ainne Sahni for the technical work, and the Research Core Laboratory of the Health Sciences Centre, Kuwait University, for their help in performing DNA sequencing for this project (project number GM01/01).

REFERENCES

