An improved rapid quantitative detection and identification method for a wide range of fungi

Nobutoshi Soeta,1 † Masanori Terashima,1 ‡ Mitsukazu Gotoh,1 Shuichi Mori,2 Kyoko Nishiyama,2 Ken Ishioka,2 Hisatoshi Kaneko2 and Tatsuo Suzutani2

Correspondence
Tatsuo Suzutani
suzutani@fmu.ac.jp

1Department of Surgery I, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
2Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan

To develop a rapid and quantitative diagnostic technique for the detection and identification of a wide range of fungi, an improved molecular method based on real-time PCR and the analysis of its products that targets the internal transcribed spacer (ITS) 2 region was established. The real-time PCR could quantitatively and specifically detect the ITS2 region from all 24 tested pathogenic fungal species at between 10^1 and 10^7 copies per test without amplification of bacterial or human DNA. The sequences of the primer-binding sites are conserved in the registered sequences of 34 other pathogenic fungal species, suggesting that the PCR would also detect these species. The hyperpolymorphic nature of the ITS2 region between fungal species in terms of length and nucleotide sequence provided valuable information for the determination of species. By labelling the 5’ end of the reverse primer with NED fluorescent dye, the fragment lengths of the real-time PCR products and their 3’-terminal fragments, derived using restriction enzyme ScFlI digestion, were easily evaluated by capillary electrophoresis. Using this analysis, the number and species of fungi present in samples could be estimated. Moreover, sequence analysis of the real-time PCR products could accurately determine species in samples containing a single species. This diagnostic technique can estimate a wide range of fungi from various clinical samples within 1 day and accurately identify them in 2 days. Quantitative results for fungal titre in samples can also provide useful information for understanding the progression of disease and the efficacy of antifungal chemotherapy.

INTRODUCTION

In recent years, the incidence of invasive opportunistic fungal infections has been increasing due to increases in the number of immunocompromised patients (Warnock, 2007). The survival of these patients is closely correlated with early antifungal chemotherapy (Morrell et al., 2005). However, conventional diagnostic techniques for fungal infections, such as blood culture and biochemical tests, lack sufficient sensitivity and specificity, and require several days or even weeks to obtain results (Espinel-Ingroff et al., 1998; Goodrich et al., 1991; Wald et al., 1997). Therefore, many cases of fungal infection have been treated through the empirical use of antifungal compounds, although relatively lower susceptibilities of some fungi to certain compounds have been observed, such as Trichosporon to amphoterin B, Candida glabrata, Candida krusei and Aspergillus to fluconazole, and Candida parapsilosis and Cryptococcus neoformans to micafungin.

To meet the need for more rapid and accurate species identification, methods based on PCR, such as random amplified polymorphic DNA (RAPD)-PCR, restriction fragment length polymorphism (RFLP) analysis, real-time PCR with species-specific probes, and sequence analysis of amplicons, have been developed (Esteve-Zarzoso et al., 1999; Kami et al., 2001; Löffler et al., 2000; Millon et al., 2002; Pryce et al., 2003). In particular, the use of real-time PCR technology has provided not only rapid and accurate results, but also clinical markers for understanding the progression of diseases and the efficacy of antifungal therapy via the fungal titre in samples (Kami et al., 2001).

Abbreviations: ITS, internal transcribed spacer; T-RFLP, terminal restriction fragment length polymorphism.

†Present address: Division of Surgery, Southern Tohoku Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama 963-8563, Japan.
‡Present address: Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumiyou, Suntoyagun 411-8777, Japan.

Received 23 September 2008
Accepted 4 May 2009

006858 © 2009 SGM Printed in Great Britain
In these studies, most of the improved PCR protocols employ universal primers that are designed for conserved regions, such as the 18S, 5.8S and 28S rRNA genes, since an ever-increasing number of species of fungi have been associated with opportunistic infection (Chen et al., 2001; De Baere et al., 2002; Esteve-Zarzoso et al., 1999; Jordanides et al., 2005; Kurtzman & Robnett, 1997; Löffler et al., 2000; Perfect & Schell, 1996; Turenne et al., 1999; Velegraki et al., 1999). However, these methods have not been optimized to cover a wide range of fungal species or to differentiate species. Therefore, in this study we report an improved rapid diagnostic technique targeting a wide range of fungi that can determine the titre of the fungus, clarify whether the infection is caused by a single species or a mixed infection, and identify pathogens from clinical samples, even if those samples contain human DNA.

METHODS

Strains. The reference strains listed in Table 1 were obtained from the German Collection of Microorganisms and Cell Cultures Biological Resource Centre (Braunschweig, Germany) and NITE Biological Resource Centre (Kisarazu, Japan). Yeasts were grown on a malt agar medium for 48 h at 25 °C, and moulds were grown on a potato dextrose agar medium for up to 7 days at 30–35 °C in accordance with the supplier’s instructions.

Nucleotide sequences of the internal transcribed spacer (ITS) 2 region from the reference strains were determined by a PCR-directed sequencing method. The target region was amplified with PCR using the primers 18S-F (forward primer; 5'-GAACCTGCGGAAGGATC-ATTA-3') and 28S-R (reverse primer; 5'-TACCTTGTTCCGTATT-CGGTGTCT-3'), which were located outside the universal fungal primers ITS86F-M and ITS4M-R (Fig. 1b). The sequencing reaction was carried out using the same primers, and sequences were analysed on an ABI PRISM 3100 genetic analyser (Applied Biosystems).

<table>
<thead>
<tr>
<th>No.</th>
<th>Organism</th>
<th>Ref. strain* (accession no.)</th>
<th>GenBank†</th>
<th>Sequence‡</th>
<th>GENESCAN§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accession no.</td>
<td>Length of PCR product (bp)</td>
<td>Length restricted by ScrFI (bp)</td>
</tr>
<tr>
<td>1</td>
<td>Candida albicans</td>
<td>DSM1386 (AB305093)</td>
<td>AY939789</td>
<td>297 297</td>
<td>297 297</td>
</tr>
<tr>
<td>2</td>
<td>Candida glabrata</td>
<td>DSM6425 (AB305094)</td>
<td>AY198398</td>
<td>376 324</td>
<td>378 326</td>
</tr>
<tr>
<td>3</td>
<td>Candida krusei</td>
<td>DSM6128 (AB305095)</td>
<td>AY939808</td>
<td>307 255</td>
<td>307 255</td>
</tr>
<tr>
<td>4</td>
<td>Candida parapsilosis</td>
<td>DSM5784 (AB305096)</td>
<td>AY217022</td>
<td>270 270</td>
<td>270 270</td>
</tr>
<tr>
<td>5</td>
<td>Candida famata</td>
<td>DSM70590 (AB305097)</td>
<td>AY125962</td>
<td>340 340</td>
<td>340 340</td>
</tr>
<tr>
<td>6</td>
<td>Candida guilliermondii</td>
<td>DSM11947 (AB305098)</td>
<td>AF218967</td>
<td>338 89</td>
<td>338 89</td>
</tr>
<tr>
<td>7</td>
<td>Candida tropicalis</td>
<td>DSM11953 (AB305099)</td>
<td>AY939810</td>
<td>287 192</td>
<td>287 192</td>
</tr>
<tr>
<td>8</td>
<td>Candida kefyr</td>
<td>NBRC00008 (AB480208)</td>
<td>AF218997</td>
<td>386 340</td>
<td>386 340</td>
</tr>
<tr>
<td>9</td>
<td>Aspergillus flavus</td>
<td>DSM 818 (AB305100)</td>
<td>AY939782</td>
<td>313 68</td>
<td>312 68</td>
</tr>
<tr>
<td>10</td>
<td>Aspergillus fumigatus</td>
<td>DSM 790 (AB305101)</td>
<td>DQ459328</td>
<td>312 105</td>
<td>312 105</td>
</tr>
<tr>
<td>11</td>
<td>Aspergillus niger</td>
<td>DSM 737 (AB305102)</td>
<td>DQ895232</td>
<td>313 68</td>
<td>313 68</td>
</tr>
<tr>
<td>12</td>
<td>Aspergillus terreus</td>
<td>NBRC4100 (AB480225)</td>
<td>AY939788</td>
<td>313 67</td>
<td>315 68</td>
</tr>
<tr>
<td>13</td>
<td>Trichosporon cutaneum</td>
<td>DSM70675 (AB305103)</td>
<td>AF444325</td>
<td>312 178</td>
<td>310 176</td>
</tr>
<tr>
<td>14</td>
<td>Trichosporon mucoides</td>
<td>DSM12017 (AB305104)</td>
<td>AF535482</td>
<td>308 174</td>
<td>310 176</td>
</tr>
<tr>
<td>15</td>
<td>Cryptococcus neoformans</td>
<td>DSM11959 (AB305105)</td>
<td>L14068</td>
<td>334 135</td>
<td>333 134</td>
</tr>
<tr>
<td>16</td>
<td>Rhodotorula mucilaginosa</td>
<td>DSM18184 (AB305106)</td>
<td>AF444635</td>
<td>363 113</td>
<td>363 113</td>
</tr>
<tr>
<td>17</td>
<td>Fusarium solani</td>
<td>DSM1164 (AB305107)</td>
<td>DQ486879</td>
<td>312 211</td>
<td>316 215</td>
</tr>
<tr>
<td>18</td>
<td>Mucor circinelloides</td>
<td>DSM1175 (AB305108)</td>
<td>AY243943</td>
<td>331 331</td>
<td>330 330</td>
</tr>
<tr>
<td>19</td>
<td>Rhizopus oryzae</td>
<td>DSM 853 (AB305109)</td>
<td>AY803931</td>
<td>335 107</td>
<td>335 107</td>
</tr>
<tr>
<td>20</td>
<td>Clavispora lusitaniae</td>
<td>NBRC1019 (AB480227)</td>
<td>AY944897</td>
<td>343 425</td>
<td>424 424</td>
</tr>
<tr>
<td>21</td>
<td>Scedosporium apiospermum</td>
<td>NBRC31146 (AB480226)</td>
<td>AJ888399</td>
<td>338 111</td>
<td>339 111</td>
</tr>
<tr>
<td>22</td>
<td>Absidia corymbifera</td>
<td>DSM1144 (AB305110)</td>
<td>AY944897</td>
<td>425 425</td>
<td>424 424</td>
</tr>
<tr>
<td>23</td>
<td>Trichophyton rubrum</td>
<td>DSM4167 (AB305111)</td>
<td>AY213689</td>
<td>330 102</td>
<td>327 96</td>
</tr>
<tr>
<td>24</td>
<td>Rhizomucor pusillus</td>
<td>DSM1331 (AB305112)</td>
<td>DQ119005</td>
<td>349 349</td>
<td>349 349</td>
</tr>
</tbody>
</table>

*Reference strains and accession numbers (in parentheses) for the sequences determined in this study.
†Predicted fragment length from the nucleotide sequence registered in GenBank.
‡Predicted fragment length from our sequencing results of the 24 reference strains.
§Fragment length of PCR products from the 24 reference strains as determined by GENESCAN analysis.
||Terminal fragment length of PCR products digested with the restriction enzyme ScrFI.
¶Data not registered in GenBank.
Extraction of fungal DNA. DNA was extracted from 500 μl of whole EDTA-anticoagulated blood or fungal suspension in water by a previously described method with some modifications (Löffler et al., 1996). Briefly, after the addition of 3 ml erythrocyte lysis buffer [10 mM NaCl, 10 mM Tris/HCl (pH 7.4), 5 mM MgCl₂], blood samples were incubated on ice for 10 min, and then leukocytes and microbes were pelleted by centrifugation at 3000 r.p.m. (800 g) for 10 min with a low-speed centrifuge. The pellet was washed once with 10 ml phosphate buffer [50 mM Tris/HCl (pH 7.5), 10 mM EDTA, 0.2% 2-mercaptoethanol]. After sonication at full power for 3 min with an ELESTEIN035 ultrasonic homogenizer (Elekon, Tokyo, Japan), 50 μl enzyme solution [100 U ml⁻¹ of recombinant lyticase (Sigma-Aldrich) and 10 mg ml⁻¹ of lysozyme chloride in lyticase buffer] was added to the samples. After incubation at 37 °C for 30 min, the resultant spheroplasts were broken using an ultrasonic homogenizer for 5 min and DNA was spun down at 18 000 r.p.m. (30 000 g) for 10 min with a microcentrifuge. DNA was purified from the pellet with a QIAamp DNA Mini kit (Qiagen) according to the manufacturer’s instructions. The DNA recovered from 50 μl elution buffer was analysed immediately or stored at −20 °C until testing.

Construction of DNA standards. The ITS2 region was amplified from Candida glabrata by PCR using the universal fungal primers ITS86M-F and ITS4M-R (Fig. 1b). The PCR products were then cloned into pGEM-T Easy Vector (Promega) using a TA cloning method. After confirming the nucleotide sequence of the insert, plasmid DNA (pGEM-CG-ITS2) was purified by a QIAprep Spin Miniprep kit (Qiagen) according to the manufacturer’s instructions.

Real-time PCR assay. PCR was performed with 20 μl of PCR mixture containing 0.2 μM of each primer, ITS86M-F and ITS4M-R, 10 μl SYBR Premix EX Taq (Takara Bio) and 2 μl of sample DNA in an ABI PRISM 7000 Sequence Detection System (Applied Biosystems). For this PCR, we used tailed ITS86M-F, which consists of ITS86M-F with seven additional nucleotides at the 5′ end, as the forward primer and ITS4M-R, labelled with the fluorescent dye NED (Applied Biosystems) at the 5′ end for T-RLFP analysis (described below), as the reverse primer (Applied Biosystems). Initial denaturation was at 95 °C for 10 s, followed by 35 cycles of denaturation at 95 °C for 5 s, and annealing and extension at 66 °C for 31 s. For each run, the standard curve was determined using 10-fold diluted purified plasmid pGEM-CG-ITS2 at 10⁻¹⁰ copies μl⁻¹. The copy number of the genomic DNA in 1 μl of sample was then determined from the standard curve with no account taken of the amount of human DNA present in the samples. The specificity of the PCR was analysed by melting curve analysis.

To determine the specificity of the primers ITS86M-F and ITS4M-R, PCR was carried out using DNA prepared from Candida glabrata, Staphylococcus aureus, Escherichia coli, and a human fibroblast cell line, hTART-BJ1 (BD Biosciences Clontech). Conditions for the real-time PCR for fungi using ITS86M-F and ITS4M-R are described above. A fragment of approximately 400 bp from the human suppressor of cytokine signalling-3 (SOCS-3) gene was amplified using primers SOCS3-Nhe (5′-TAATGCTAGCGCCGAGCCAGGCTCCGCAGGC-3′) and SOCS3-400Kpn (5′-TAGTTGATCCTTTGCTGC-3′). Initial denaturation was at 95 °C for 2 min, followed by 40 cycles of denaturation (30 s at 95 °C), annealing (1 min at 58 °C) and extension (30 s at 72 °C). Using the universal primers for the bacterial 16S rRNA gene, 27f (5′-AGAGTTTGATCCTGGCTCAG-3′) and 803r (5′-GACATCGTATGGTCGCAGC-3′), a fragment of approximately 800 bp from the bacterial gene was amplified under thermal cycling conditions as follows: initial denaturation (95 °C for 2 min) and 40 cycles of denaturation (30 s at 95 °C), annealing (1 min at 56 °C) and extension (1 min at 72 °C).

Fragment length analysis of PCR products. The DNA fragment lengths were determined to estimate the number and approximate the species of fungi present in the sample. One microlitre of the real-time PCR products, labelled with NED by the reverse primer, was treated with or without the restriction enzyme in 10 μl of reaction mixture. Digestion was performed by incubating a 1 μl aliquot of the PCR products with the restriction enzyme ScrI in a final reaction volume of 10 μl at 37 °C for 1 h. After digestion, 1 μl of the reaction mixture was mixed with 10 μl capillary electrophoresis mixture, consisting of 9.5 μl Hi-Di formamide and 0.5 μl GENESCAN 400HD (ROX) or 500 (LIZ) Size Standard (Applied Biosystems), and analysed with an ABI PRISM 3100 genetic analyser using GENESCAN analysis software version 3.7 (Applied Biosystems).

RESULTS AND DISCUSSION

Design of universal fungal primers for real-time PCR

Four regions, the 18S rRNA gene, ITS1 region, ITS2 region and 28S rRNA gene (D1/D2 region), have been previously reported as potential targets for the development of a universal fungal PCR primer (Chen et al., 2000; Kurtzman & Robnett, 1997; Lott et al., 1993; Makimura et al., 1994; Turenne et al., 1999). We aligned these regions from the human DNA sequence and various fungal DNA sequences.
derived from our original sequencing results and the GenBank database, and searched the regions with a consensus sequence for most fungal species but not the human sequence. From these regions, we chose two candidate sites, in the 5.8S and 28S rRNA genes, for the construction of a primer set for real-time PCR whereby the PCR products would be kept below 400 bp through a limitation of the real-time PCR and at least one primer would be specific for fungi, so as to avoid amplification of any human DNA present in the clinical samples (Fig. 1a).

The primer set designed for the regions had been reported as ITS86 and ITS4 (Turenne et al., 1999); however, we modified these primers to create ITS86M-F and ITS4M-R (Fig. 1b) with the following advantages: (i) the lengths of ITS86M-F and ITS4M-R were 2- and 8-mer longer than the original primers, respectively, leading to an increase in Tm and specificity, (ii) ITS86M-F was synthesized as a tailed primer consisting of a specific sequence for the fungal 5.8S rRNA gene and seven additional nucleotides at the 5’ end to stimulate Taq polymerase for the generation of single-base 3’ adenine overhangs and to produce PCR products of uniform length, and (iii) ITS4M-R was labelled with the fluorescent marker NED at the 5’ end for the detection of PCR products by capillary electrophoresis. These primers amplified a single PCR product from Candida glabrata but none from human or bacterial DNA, and were able to successfully amplify the ITS2 region from each of the 24 fungal reference strains.

Sample preparation

To increase the usefulness of our assay for practical diagnostic purposes, a reduction in time taken from sample collection to final diagnosis was also required. DNA extraction is generally a time-consuming and troublesome step, requiring more than half a working day (Löffler et al., 1996; Lugert et al., 2006). Therefore, we improved this step through the use of an ultrasonic homogenizer instead of proteinase treatment for disrupting fungi and established a rapid and quantitative DNA extraction method (see Methods).

Sensitivity of real-time PCR

The detection limit and quantification capacity of the real-time PCR assay for fungi with the primer set ITS86M-F/ITS4M-R was evaluated using the Candida glabrata target region cloned into the pGEM-T plasmid as a template. The 100 % detection limit of PCR was 10 copies per microlitre of the template (Fig. 2a). Melting curve analysis indicated that the reaction products were specific and a quantitative result was obtained from 10¹ to 10⁷ copies per assay with the amount of PCR product was monitored at the end of each cycle with SYBR Green. The slope of the standard curve was −1.2536 cycles per log decade and the correlation coefficient was 0.9954.

Monitoring of one patient and the existence of significant differences in log-order between corresponding specimens from different patients would nevertheless provide us with valuable information.

Fragment length analysis of PCR products

Data from the GenBank database and our sequencing results from the 24 fungal reference strains showed that
PCR product length is highly variable among fungal species, ranging from 211 bp for *Clavispora lusitaniae* to 424 bp for *Absidia corymbifera* (Table 1), and that the sequences of the ITS2 region are hyper-variable between species, as described previously (Chen et al., 2001; Rakeman et al., 2005). Therefore, the length of amplicons or fragments after restriction enzyme digestion can provide valuable information regarding the number and identification of species in samples. For this purpose, we used a NED-labelled primer (ITS4M-R) as the reverse primer for real-time PCR and analysed the 3’ terminal fragment length of PCR products from the 24 reference strains with and without restriction enzyme digestion (T-RFLP).

Of the 24 fungal species, nine (numbers 20, 4, 7, 1, 24, 16, 2, 8 and 22) could be differentiated from the other 15 without restriction enzyme digestion (Fig. 3a). Within the genus *Candida* (designated 1–8 in Fig. 3a; refer to Table 1), the ITS2 fragments ranged from 270 to 386 bp in length. However, the product size from (i) *Candida famata* (5) and *Candida guillermondii* (6), (ii) *Cryptococcus neoforms* (15), *Rhizopus oryzae* (19), *Mucor circinelloides* (18) and *Scedosporium apiospermum* (21), and (iii) *Aspergillus* spp. (9–12), *Trichosporon* spp. (13, 14), *C. krusei* (3) and *Fusarium solani* (17), were of similar lengths, ranging from 338 to 339 bp, 329 to 336 bp and 305 to 312 bp, respectively.

To differentiate between these species, we selected ScrFI as the most suitable restriction enzyme and established a T-RFLP analysis system. Using this method, the ITS2-fragment lengths from each species ranged from 64 bp for *Aspergillus flavus* (9) and *Aspergillus niger* (11) to 424 bp for *Absidia corymbifera* (22; Fig. 3b). Fourteen species from the 24 test fungal species were clearly differentiated (Table 1, Fig. 3). The lengths of PCR products and the 3’ terminal fragments obtained by ScrFI digestion for 34 other pathogenic fungal species predicted from sequence data in GenBank are summarized in Table 2.

We observed slight differences between the fragment lengths predicted from the sequence data and those evaluated by GENESCAN for *Aspergillus* and *Trichosporon* (Table 1). This discrepancy can be explained by the fact that electrophoretic migration is partially sequence dependent (Chen et al., 2001). Fragment length polymorphisms involving a few base pairs were also observed between strains registered in GenBank. These indicated that small interspecies differences in fragment length, which were observed in two groups of around 310 bp and 340 bp, could not be used to differentiate fungi at the species level. We employed T-RFLP analysis in the assay using the restriction enzyme ScrFI and obtained adequate results for species identification. However, as we have not analysed the influence of polymorphisms in the nucleotide sequence in a large number of strains from one species, the effectiveness of T-RFLP analysis for the differentiation of strains has not yet been confirmed.
Identification of species by nucleotide sequence analysis of PCR products

It was previously reported that 372 of 373 tested fungal strains from 86 species (99.7 %) were correctly identified by sequence analysis of the ITS2 region. Only *Cryptococcus albidus* could not be differentiated from *Cryptococcus adeliensis* because of 100 % sequence identity between the ITS2 regions of these two species (Leaw et al., 2006). We confirmed that the 24 strains tested in this study were correctly identified by sequence analysis of real-time PCR products (data not shown).

Analysis of a clinical case

To evaluate the efficacy of our method, serial whole-blood samples from a patient diagnosed with candidaemia due to central-venous catheter infection were analysed retrospectively (Fig. 4). The patient developed antibiotic-resistant fever and *Candida albicans* was isolated and identified from his blood sample on day 2. Thus, antifungal chemotherapy with micafungin sodium (100 mg day$^{-1}$) was started and *Candida albicans* was no longer detectable in blood sampled on day 8 or 15. These three blood samples, which had been stored in a freezer, were examined using our real-time PCR system. Twenty-four copies of fungal DNA per microlitre were detected in the blood sample taken on day 2, but no fungal DNA was detected in the blood sampled on day 8 or 15. The real-time PCR products from the sample taken on day 2 showed a single fluorescent peak corresponding to a product of 296 bp both with and without ScrFI digestion. These results

Table 2. Predicted fragment length of PCR products from other less common species known to cause invasive fungal infection

Fragment lengths amplified by PCR using primers ITS86M-F and ITS4M-R were predicted from the registered sequences in GenBank. Asterisks signify no restriction enzyme site in the PCR product.

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession no.</th>
<th>Length of PCR product (bp)</th>
<th>Length restricted by ScrFI (bp)</th>
</tr>
</thead>
</table>
Results obtained from the blood culture.

The grey bar indicates the copy number of the fungal DNA. MCFG, micafungin; F-FLCZ, fosfluconazole (dose 100 mg day−1).

Fig. 4. Clinical course of a patient diagnosed with candidaemia due to central-venous catheter (CVC) infection. On day 2, Candida albicans was isolated from the blood culture. Retrospective analysis detected 24 copies µl−1 of fungal DNA in the blood. The CVC infection had cleared by day 3. After antifungal chemotherapy, no fungal DNA was detected in blood sampled on day 8 or 15. ●, Patient’s temperature pattern; ●, patient’s (1,3)-β-D-glucan pattern. The grey bar indicates the copy number of the fungal DNA. MCFG, micafungin; F-FLCZ, fosfluconazole (dose 400 mg per day).

indicated that the patient was infected with one species and that it might be Candida albicans. By analysis of the nucleotide sequence of the amplicon, the pathogen was identified as Candida albicans, which corresponded to the results obtained from the blood culture.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (16590990 and 20591923) and a Grant-in-Aid for Project Research from Fukushima Medical University.

REFERENCES

