Interpretive criteria to differentiate low- and high-level mupirocin resistance in *Staphylococcus aureus*

Naira Elane Moreira de Oliveira,¹ Ana Paula Couto Marques Cardozo,¹ Elizabeth de Andrade Marques,² Kátia Regina Netto dos Santos¹ and Marcia Giambiagi-deMarval¹

¹Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brazil
²Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, RJ, Brazil

Meticillin-resistant *Staphylococcus aureus* isolates were classified into three mupirocin susceptibility groups by the disc diffusion method using 5 and 200 μg mupirocin discs. The zone diameter observed for a 5 μg disc distinguished MupS from the resistant strains (either MupRL or MupRH). On the other hand, a 200 μg disc distinguished the high-resistance MupRH strains from the other two (MupS or MupRL). Thus, the concomitant use of 5 and 200 μg mupirocin discs allowed the clear distinction among the three mupirocin susceptibility groups, MupS, MupRL or MupRH.

INTRODUCTION

Mupirocin is an effective antibiotic for the elimination of meticillin-resistant *Staphylococcus aureus* (MRSA) that colonize the nasopharynx. It has been used to control the spread of these micro-organisms among patients during outbreaks (Eltringham, 1997). Mupirocin-resistant strains are grouped into two distinct categories: low level (MupRL), with MICs of 8–256 μg ml⁻¹, and high level (MupRH), with MICs ≥512 μg ml⁻¹ (Eltringham, 1997). Susceptible strains are defined as those with a MIC ≤4 μg, showing zone diameters of ≥14 mm around 5 μg mupirocin discs (Finlay et al., 1997; Fuchs et al., 1990). Strains presenting diameters <14 mm are considered to be mupirocin resistant (either MupRH or MupRL). High-level mupirocin resistance has been associated with failure to clear the organism from patients. However, it has been suggested that MupRL nasal isolates can still be controlled with mupirocin therapy, as the ointment used contains a much higher mupirocin concentration (20 000 μg ml⁻¹) than the MupRL MICs (Hudson, 1994). The dilution method is considered the ‘gold standard’ for the determination of mupirocin-resistance levels. We have recently shown that the mupirocin Etest (AB Biodisk) with tetrazolium reduction is more accurate, thus bringing the Etest closer to the gold standard agar dilution method for determining the mupirocin MICs for *S. aureus* strains (Mondino et al., 2003). However, both agar dilution and Etest are too expensive and laborious for routine application. Clinical laboratories are able to differentiate MupS strains using the 5 μg disc, but the resistant strains can only be distinguished empirically, as MupRH isolates show heavy growth around the 5 μg mupirocin disc, whereas MupRL isolates produced hazy zones of inhibition (Deshpande et al., 2002).

At present, there are no criteria for the disc diffusion method to differentiate between low- and high-level mupirocin resistance. Therefore, we propose the concomitant use of 5 and 200 μg mupirocin discs to distinguish clearly the three susceptibility groups of mupirocin-resistant *S. aureus* strains.

METHODS

Strains and culture conditions. We selected 45 MRSA isolates previously classified by the agar dilution method (Santos et al., 1999), as susceptible (13 MupS) or low-level (16 MupRL) and high-level (16 MupRH) mupirocin-resistant strains. The strains were isolated from patients attending the Teaching Hospital of the Federal University of Rio de Janeiro, Brazil. PFGE showed that the isolates belonged to eight different clones or subclones (Santos et al., 1999). In addition, susceptible ATCC 25923 and MupRH HU1A (Bastos et al., 1999) control strains were analysed. PCR analysis revealed that only the MupRH strains possessed the *mupA* gene (Nunes et al., 1999). In the second part of the study, we validated the proposed classification criteria by analysing 79 nosocomial *S. aureus* strains.

Disc diffusion susceptibility tests. Disc diffusion tests were carried out according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI, 2006). Plates containing Mueller–Hinton broth (Difco) were swabbed in three directions with 0.5 McFarland inocula and 6 mm discs containing 5 or 200 μg mupirocin (Oxoid) were applied. Following incubation at 35 °C for 18 h, the diameters of the inhibition zones were determined in mm. The results of mupirocin susceptibility testing related to the 5 μg disc were interpreted as described by Fuchs et al. (1990). All strains were retested using Mueller–Hinton broth purchased from bioMerieux.
Detection of the mupA gene by PCR. All the strains were analysed by PCR for the presence of the mupA gene, also known as ileS-2, responsible for high-level mupirocin resistance (Nunes et al., 1999).

Scatterplot. The results were compared by scatterplot analysis. The criteria established by Fuchs et al. (1990) were employed for the 5 µg mupirocin disc.

RESULTS
Criteria to differentiate resistant from susceptible mupirocin strains are well established using the disc diffusion method with the 5 µg disc. However, this breakpoint does not differentiate between low-level (MupRL) and high-level (MupRH) resistant S. aureus strains. Therefore, we decided to verify the use of the 5 µg disc concomitant with the 200 µg mupirocin disc on 45 well-characterized MRSA strains to attempt to distinguish MupRL from MupRH mupirocin-resistant strains. The inhibition zones around the 5 and 200 µg mupirocin discs allowed us to classify the strains into the three mupirocin susceptibility groups (MupS, MupRL, and MupRH). No significant differences in the size of the inhibition zones were observed when culture medium from a different company was used.

The disc diffusion results using the 5 and 200 µg mupirocin discs were plotted on a scatterplot (Fig. 1). As previously shown, the scatterplot revealed that the 5 µg disc distinguished two groups, susceptible and resistant strains, when a zone size breakpoint of ≥14 mm was used. However, the 5 µg disc was unable to differentiate the two mupirocin-resistant subgroups, which are classified according to their MICs (MupRL 8–256 µg ml⁻¹, MupRH ≥512 µg ml⁻¹). The scatterplot for the 200 µg disc showed that, using a diameter breakpoint of ≥14 mm, the strains could be differentiated as belonging to either MupRH or MupRL/MupS (Fig. 1). The latter included the low-level resistant MupRL and the susceptible MupS strains, which could not be distinguished clearly using the 200 µg disc. Therefore, we propose concomitant use of the 5 and 200 µg mupirocin discs to differentiate the three categories of mupirocin susceptibility presented by S. aureus strains (Table 1). Our results suggest that the absence of a zone for the 5 µg disc indicates resistance (MupRL or MupRH) to mupirocin; the absence of a zone with the 200 µg disc indicates high-level mupirocin resistance. The absence of a zone with the 5 µg disc and an inhibition zone (≥14 mm) around the 200 µg disc are characteristic for MupRL, as shown in Table 1. For validation of these criteria, 79 nosocomial S. aureus strains were tested using our method, resulting in 72 MupS, 3 MupRL and 4 MupRH strains. PCR detected the mupA gene only in the four MupRH strains.

DISCUSSION
The need for antimicrobial susceptibility testing of S. aureus isolates is becoming more urgent. S. aureus is the most frequently isolated pathogen from nosocomial infections and, due to an increased number of infections caused by MRSA strains, chemotherapy has become difficult (Lowy, 2003). Mupirocin ointment has been used in nasal decolonization to control MRSA outbreaks, but mupirocin resistance has been observed. The ease of use of the disc diffusion susceptibility test makes it adequate for routine use. This methodology employing a 5 µg mupirocin disc has been established to differentiate resistant from susceptible strains (Finlay et al., 1997; Fuchs et al., 1990). However, the 5 µg mupirocin disc does not differentiate resistant MupRL and MupRH strains. In addition, Palepou et al. (1998) stated that the use of either a 5 or a

![Fig. 1. Scatterplots of mupirocin MICs comparing the inhibitory zone diameters for 5 (a) and 200 µg (b) discs, obtained for 45 MRSA isolates. The vertical broken lines represent the zone diameter breakpoints. For the 5 µg disc, a breakpoint of ≥14 mm has been suggested by Fuchs et al. (1990). A proposed breakpoint zone (≥14 mm) was also used for the 200 µg disc.]

Table 1. Criteria proposed to determine the categories of mupirocin susceptibility by the disc diffusion method

<table>
<thead>
<tr>
<th>Inhibition zone diameter (mm)</th>
<th>Interpretive criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 µg disc</td>
<td>200 µg disc</td>
</tr>
<tr>
<td>≥14</td>
<td>≥14</td>
</tr>
<tr>
<td>−</td>
<td>≥14</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

−, Absence of inhibition zone.
200 µg disc alone did not reliably distinguish Mup\(^{RL}\) from Mup\(^{RH}\) strains. Therefore, the purpose of this study was to evaluate the concomitant use of 5 and 200 µg mupirocin discs to distinguish the three mupirocin susceptibility categories of \(S.\) aureus isolates.

We analysed a total of 124 \(S.\) aureus isolates and found 20 Mup\(^{RH}\), 19 Mup\(^{RL}\) and 85 Mup\(^{S}\). We established the criteria using 45 \(S.\) aureus strains (16 Mup\(^{RH}\), 16 Mup\(^{RL}\) and 13 Mup\(^{S}\)) that had been well characterized by the agar dilution method and PFGE (Santos et al., 1999), PCR (Nunes et al., 1999) and Etest (Mondino et al., 2003). We validated the criteria by analysing another 79 \(S.\) aureus nosocomial strains. Additional studies should be performed on coagulase-negative \(Staphylococcus\) strains in order to establish the criteria required to determine mupirocin susceptibility in this group of micro-organisms.

Clearance of \(S.\) aureus nasal colonization can reduce the subsequent risk of development of infection by MRSA, in addition to reducing the spread of these micro-organisms. Therefore, the criteria established in this study could help to identify \(S.\) aureus strains with low-level mupirocin resistance in a fast and feasible way. It could be used as an important epidemiological tool in hospitals using large amounts of mupirocin, to guide the possible need for more rigid infection-control measures.

ACKNOWLEDGEMENTS

The authors express their gratitude to Dr Alexandra M. Schmidt, PhD, for statistical analysis, Dr Walter Oelemann for critical reading of the manuscript and GlaxoSmithKline for supplying the mupirocin powder. This study was supported by Brazilian grants (MCT/CNPq, FAPERJ and Pronex/FAPERJ) to M.G.-M.

REFERENCES

