Investigating vomiting and/or bloody diarrhoea in Campylobacter jejuni infection

Iain A. Gillespie,1 Sarah J. O’Brien,2 Jennifer A. Frost,3 Clarence Tam,1 David Tompkins,4 Keith R. Neal,5 Qutub Syed,6 Michael J. G. Farthing,7 and The Campylobacter Sentinel Surveillance Scheme Collaborators†

1Environmental and Enteric Diseases Department, Health Protection Agency (HPA) Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
2Division of Medicine and Neuroscience, Manchester University, Clinical Sciences Building, Hope Hospital, Stott Lane, Salford M6 8HD, UK
3Welsh Assembly, Cardiff CF99 1NA, UK
4HPA Yorkshire and the Humber Regional Microbiology, Bridle Path, York Road, Leeds LS15 7TR, UK
5Division of Epidemiology and Public Health, School of Community Health Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
6HPA North West, Rooms 103–112, First Floor, DBH House, 105 Boundary Street, Liverpool L5 9YJ, UK
7St George’s Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK

Correspondence Iain A. Gillespie Iain.Gillespie@hpa.org.uk

Received 18 November 2005
Accepted 30 January 2006

Campylobacter jejuni infection frequently presents as acute enteritis with diarrhoea, malaise, fever and abdominal pain. Vomiting and bloody diarrhoea are reported less frequently. To investigate potential host, micro-organism or environmental factors that might explain the different clinical presentations, the features of laboratory-confirmed Campylobacter jejuni cases presenting with vomiting and/or bloody diarrhoea were compared with cases who did not report either clinical manifestation. Single variable analysis and logistic regression were employed. Explanatory variables included food, water and environmental risks. Cases who reported vomiting and/or bloody diarrhoea tended to suffer a longer illness and were more likely to require hospital admission. Independent risks identified were being a child, female gender, consumption of poultry other than chicken, pre-packed sandwiches and sausages, and reported engineering work or problems with drinking-water supply. A dose-response relationship with vomiting and/or bloody diarrhoea and increasing daily consumption of unboiled tap water was observed also. Vomiting and/or bloody diarrhoea characterized the more severe end of the disease spectrum and might relate to host susceptibility and/or infective dose. The role of unboiled tap water as a potential source of C. jejuni infection in England and Wales requires further investigation.

INTRODUCTION

Campylobacter infection represents a significant and persistent public health problem in the UK. Approximately 40 000 laboratory-confirmed cases are reported annually in England and Wales (Health Protection Agency, 2005), a figure which is estimated to underascertain disease in the community by a factor of eight (Wheeler et al., 1999). The disease is unpleasant and debilitating, with approximately 10% of cases requiring hospital treatment as a result of their infection (Gillespie et al., 2002). Sequelae that can accompany illness, such as reactive arthritis, toxic megacolon and Guillain-Barré syndrome, add to the disease burden (Hahn, 1998).
Infection with *Campylobacter jejuni* most frequently presents as acute enteritis. Classic medical textbook descriptions of *Campylobacter* enteritis list the commonly reported symptoms as diarrhoea, malaise, fever and abdominal pain (Blaser, 2000; Skirrow, 1996). The spectrum of diarrhoea ranges from loose stools through profuse watery diarrhoea to frankly bloody stools (Blaser, 2000). Tissue injury can occur along the bowel from jejunum to colon, and gross pathological examination of the gut in severe cases reveals a diffuse, bloody, oedematous and exudative enteritis (Blaser, 2000; King, 1962). Severe disease may be clinically, sigmoidoscopically and histologically difficult to differentiate from ulcerative colitis, and *Campylobacter* infection forms part of the differential diagnosis for inflammatory bowel disease (Lambert et al., 1979). Abdominal pain may be so severe that *Campylobacter* enteritis can be confused with acute appendicitis (Blaser et al., 1979; Lambert et al., 1979).

In the first year of a population-based sentinel surveillance study of *Campylobacter* infection in England and Wales, diarrhoea (95%), abdominal pain (85%) and fever (78%) were the most commonly reported symptoms, whilst vomiting (35 %) and bloody diarrhoea (27 %) were reported less frequently (Communicable Disease Surveillance Centre, 2001). To investigate potential host, micro-organism or environmental factors that might explain the different clinical presentations, we compared the features of *C. jejuni* cases presenting with vomiting and/or bloody diarrhoea with cases who did not report either clinical manifestation.

METHODS

The Campylobacter Sentinel Surveillance Scheme has been described in detail elsewhere (Gillespie et al., 2002). In brief, standardized clinical and epidemiological data, generated through postal questionnaires, were integrated with microbiological typing data for laboratory-confirmed cases of *Campylobacter* infection in participating health authorities in England and Wales. The scheme began on 1 May 2000 (Communicable Disease Surveillance Centre, 2000b) and ran until 30 April 2003. The response rate was consistently over 75% (The Campylobacter Sentinel Surveillance Scheme Collaborators, 2003).

Statistical analysis, performed using Stata statistical software release 8.0 (StataCorp, College Station, TX), was restricted to cases of *C. jejuni* infection who had not travelled abroad in the 2 weeks before illness to control for the confounding effect of foreign travel. Cases who were infected with more than one *Campylobacter* subtype [as defined by serotyping (Frost et al., 1998), phage-typing (Frost et al., 1999) and/or antimicrobial resistance pattern (Thwaites & Frost, 1999)] were excluded, as were cases whose specimen dates were either prior to, or greater than 31 days from, their onset date.

The date of illness onset was used to define the season in which illness commenced. Season was coded to compare cases with an onset in spring (March to May) with those who were ill in summer (June to August), autumn (September to November) and winter (December to February). Patients’ description of their ethnic origin was classified according to the UK census 2001 (Office for National Statistics, 2001). Age values were recoded to compare infants (< 1 year of age) with toddlers (1–4 years), young children (5–9 years), older children and teenagers (10–17 years), adults (18–64 years) and the elderly (≥ 65 years). Food exposures were coded to compare cases who had eaten a food once or more than once in the exposure period (2 weeks prior to the onset of symptoms) with those who had not. Contact with raw meat was coded to compare no contact with once, two to five times, six to ten times and more than eleven times. Daily consumption of unboiled tap water was recoded to compare zero consumption with one to four, five to nine and ≥ 10 glasses drunk. Binary variables were created to compare the 10 most commonly identified serotypes of *C. jejuni* with other known serotypes. Individuals with missing information for any of the variables of interest were omitted from the analyses using those variables.

For the case–case comparison, cases of *C. jejuni* infection reporting vomiting and/or bloody diarrhoea were considered ‘cases’, whilst those who did not report either symptom were considered ‘controls’. It is important to note that symptoms were self-reported. The demographic and clinical profiles of cases and controls were compared using Pearson’s chi square test and Student’s *t* test. Differences in exposure were compared initially using simple logistic regression models. Point estimates and 95% confidence intervals (CIs) for the Mantel–Haenszel odds ratio (OR) were calculated for each explanatory variable whilst controlling for the effect of age.

Proximal (Victora et al., 1997) exposures with a P value of less than 0·1 were then included in a larger model to obtain maximum-likelihood estimates of the effect of exposures on the outcome of interest, whilst controlling for confounding. The distal (Victora et al., 1997) exposures age, gender, season and ethnicity were included and retained in the model throughout. The significance of exposures was tested using the likelihood ratio (LR) test, and the model was simplified accordingly.

RESULTS AND DISCUSSION

Linked epidemiological and microbiological data were available for 11,831 cases of *C. jejuni* infection referred during the study (1 May 2000 to 30 April 2003). Cases ranged from less than 1 month to 97 years of age (median 39 years), and the gender distribution was even. Nine hundred and seven of 11,693 cases (8%) were admitted to hospital as a result of their illness.

Amongst those cases who reported their foreign travel status (11,648; 98%), 2,261 cases (19%) had travelled abroad in the 2 weeks before illness. Cases who reported foreign travel or who did not report their foreign travel status were excluded, as were cases (51; 0·44%) infected with more than one subtype, and 397 cases (3%) for whom the recorded specimen date preceded the reported onset date (*n* = 69) or exceeded it by >31 days (*n* = 328). This left 9,350 UK-acquired cases of *C. jejuni* infection for analysis.

Diarrhoea, abdominal pain and fever were reported by 9,056 (96·9%), 8,114 (86·8%) and 7,440 (79·6%) cases, respectively. Vomiting was reported by 3,346 cases (35·8%) and bloody diarrhoea by 2,661 cases (28·5%), and cases who reported one of these symptoms were more likely to report the other (χ² 138·19; *P* < 0·001). In total, 4,043 cases (43·2%) reported one or both clinical presentations. These cases were compared with the 3,335 cases (35·7%) who reported no vomiting or bloody diarrhoea. A further 1,972 cases (21·1%) who did not respond to the questions of vomiting and/or bloody diarrhoea were excluded from further analysis. Cases who reported vomiting and/or bloody diarrhoea experienced
a longer illness than cases who did not report either symptom (mean 11.8 versus 10.9 days; t test P = 0.007) and were more likely to be admitted to hospital (11.8 % versus 5.1 %; χ² = 99.5; P < 0.001).

Single variable analysis

Self-reported vomiting and/or bloody diarrhoea amongst cases of *C. jejuni* infection decreased with age (Table 1). Cases who reported vomiting and/or bloody diarrhoea were more likely to be female and were more likely to report the consumption of barbecued foods, pre-packed sandwiches, sausages, and foods eaten in restaurants. They were more likely to have reported a number of water exposures and to have been exposed to pet cats. They were less likely to report the consumption of fish and shellfish, cheese and salad. Reported vomiting and/or bloody diarrhoea appeared to differ depending on infecting serotype.

Logistic regression analysis

Independent risks for being a case of *C. jejuni* infection who reported vomiting and/or bloody diarrhoea appeared to differ depending on infecting serotype.

Table 1. Risk exposures for reported vomiting and/or bloody diarrhoea in *C. jejuni* infection

Single variable logistic regression analysis (variables with a *P* value of <0.1 shown).

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Percentage exposed</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases* (n = 4043)</td>
<td>Controls† (n = 3335)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female gender</td>
<td>51.6</td>
<td>47.7</td>
<td>1.24</td>
<td>1.13</td>
</tr>
<tr>
<td>Infants</td>
<td>3.9</td>
<td>1.2</td>
<td>1.0</td>
<td>0.38</td>
</tr>
<tr>
<td>1–4 years</td>
<td>9.3</td>
<td>5.2</td>
<td>0.56</td>
<td>0.31</td>
</tr>
<tr>
<td>5–9 years</td>
<td>3.5</td>
<td>2.2</td>
<td>0.49</td>
<td>0.30</td>
</tr>
<tr>
<td>10–17 years</td>
<td>5.0</td>
<td>3.4</td>
<td>0.45</td>
<td>0.22</td>
</tr>
<tr>
<td>18–64 years</td>
<td>69.1</td>
<td>67.8</td>
<td>0.32</td>
<td>0.10</td>
</tr>
<tr>
<td>≥65 years</td>
<td>9.3</td>
<td>20.2</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Foods eaten in restaurants</td>
<td>51.7</td>
<td>47.9</td>
<td>1.18</td>
<td>1.07</td>
</tr>
<tr>
<td>Barbecued foods</td>
<td>17.4</td>
<td>14.8</td>
<td>1.16</td>
<td>1.02</td>
</tr>
<tr>
<td>Pre-packed sandwiches</td>
<td>44.7</td>
<td>41.9</td>
<td>1.16</td>
<td>1.04</td>
</tr>
<tr>
<td>Poultry other than chicken</td>
<td>19.6</td>
<td>18.1</td>
<td>1.14</td>
<td>1.00</td>
</tr>
<tr>
<td>Sausages</td>
<td>60.9</td>
<td>59.2</td>
<td>1.12</td>
<td>1.01</td>
</tr>
<tr>
<td>Salad</td>
<td>71.1</td>
<td>76.4</td>
<td>0.87</td>
<td>0.77</td>
</tr>
<tr>
<td>Cheese</td>
<td>77.7</td>
<td>82.3</td>
<td>0.86</td>
<td>0.76</td>
</tr>
<tr>
<td>Fish and shellfish</td>
<td>55.8</td>
<td>63.6</td>
<td>0.82</td>
<td>0.74</td>
</tr>
<tr>
<td>Unpasteurized milk</td>
<td>8.0</td>
<td>6.7</td>
<td>1.21</td>
<td>1.00</td>
</tr>
<tr>
<td>Engineering work/supply problems‡</td>
<td>7.3</td>
<td>5.0</td>
<td>1.52</td>
<td>1.24</td>
</tr>
<tr>
<td>Water from private supplies</td>
<td>7.2</td>
<td>5.1</td>
<td>1.43</td>
<td>1.14</td>
</tr>
<tr>
<td>Bottled water§ drunk daily: none</td>
<td>51.8</td>
<td>45.9</td>
<td>1.28</td>
<td>1.15</td>
</tr>
<tr>
<td>One to four</td>
<td>64.0</td>
<td>68.0</td>
<td>1.18</td>
<td>1.00</td>
</tr>
<tr>
<td>Five to nine</td>
<td>22.5</td>
<td>17.7</td>
<td>1.51</td>
<td>1.25</td>
</tr>
<tr>
<td>≥10</td>
<td>3.0</td>
<td>1.7</td>
<td>2.07</td>
<td>1.42</td>
</tr>
<tr>
<td>Windsurfing</td>
<td>0.37</td>
<td>0.13</td>
<td>2.80</td>
<td>0.91</td>
</tr>
<tr>
<td>Fishing</td>
<td>1.64</td>
<td>1.01</td>
<td>1.60</td>
<td>1.04</td>
</tr>
<tr>
<td>Contact with a pet hamster</td>
<td>4.7</td>
<td>3.1</td>
<td>1.41</td>
<td>0.97</td>
</tr>
<tr>
<td>Contact with a pet cat</td>
<td>48.2</td>
<td>43.4</td>
<td>1.20</td>
<td>1.05</td>
</tr>
<tr>
<td>HS50 versus other serotypes</td>
<td>21.6</td>
<td>17.8</td>
<td>1.25</td>
<td>1.08</td>
</tr>
<tr>
<td>HS2 versus other serotypes</td>
<td>5.2</td>
<td>4.3</td>
<td>1.16</td>
<td>0.89</td>
</tr>
<tr>
<td>HS13 versus other serotypes</td>
<td>24.5</td>
<td>22.0</td>
<td>1.16</td>
<td>1.02</td>
</tr>
<tr>
<td>HS31 versus other serotypes</td>
<td>7.6</td>
<td>8.5</td>
<td>0.97</td>
<td>0.79</td>
</tr>
<tr>
<td>HS37 versus other serotypes</td>
<td>4.3</td>
<td>5.6</td>
<td>0.71</td>
<td>0.55</td>
</tr>
<tr>
<td>HS18 versus other serotypes</td>
<td>3.5</td>
<td>5.1</td>
<td>0.69</td>
<td>0.52</td>
</tr>
</tbody>
</table>

*Cases of *C. jejuni* infection who reported vomiting and/or bloody diarrhoea.
†Cases of *C. jejuni* infection who did not report vomiting and/or bloody diarrhoea.
‡In relation to mains water.
§Unboiled tap water.
poultry other than chicken, pre-packed sandwiches and sausages (Table 2). The likelihood of reported vomiting and/or bloody diarrhoea increased with reported engineering work or problems with drinking water supply and with increasing daily consumption of unboiled tap water. Cases infected with serotype HS37 were less likely to report bloody diarrhoea than those cases infected with other serotypes.

We have analysed data from a large sentinel surveillance scheme for *Campylobacter* infection in England and Wales in order to identify clinical, epidemiological or microbiological features leading to reported vomiting and/or bloody diarrhoea amongst UK-acquired cases of *C. jejuni* infection. A number of points need to be considered when interpreting these findings.

Firstly, cases included in this study were those whose infections were confirmed using microbiological methods. These cases are likely to represent the more severe end of the clinical spectrum (Tam *et al.*, 2003). Secondly, exposure data were self-reported over a 2-week period prior to onset, increasing the likelihood of reporting bias. There is no reason to believe, however, that these biases operate differently in those who were included as ‘cases’ in the analysis compared with ‘controls’. Thirdly, it has been suggested that co-infections might provide an explanation for the observed vomiting and/or bloody diarrhoea. Data on co-infections were unavailable and a degree of uncontrolled confounding might therefore have occurred. However, in general, low levels of co-infection for campylobacters are reported in the literature (Blaser *et al.*, 1983; The Food Standards Agency, 2000), so this is unlikely to have had a major effect on the findings. Finally, it is possible that additional confounding factors not included in our analysis affected our results. However, we have captured standardized information on a wide range of exposures for a large number of cases of *C. jejuni* infection, so the likelihood of this taking place has been minimized.

We elected to consider symptoms of vomiting and bloody diarrhoea together. Our a priori hypothesis was that vomiting and bloody diarrhoea did not share a common aetiology. However, the fact that cases who reported one of the symptoms were more likely to report the other suggested that this was not the case. Furthermore, initial analyses (not shown) examining each symptom separately produced very similar findings, reinforcing the need for a combined analysis.

Reported vomiting and/or bloody diarrhoea was strongly related to the age of the case. This might relate to host susceptibility or might represent ascertainment bias. It is possible that the relatively immature colonic flora (Stark & Lee, 1982) and intestinal immune system (Davies, 1988) of the infant might lead to a more severe infection and hence clinical presentation (Blaser, 2000). Alternatively, these are alarming symptoms that parents might be more likely to report on behalf of their children. The observed inverse ‘dose-response’ relationship with increasing age group, however, suggests perhaps that the effect is a genuine one.

The direction of the association amongst the food variables independently associated with vomiting and/or bloody diarrhoea warrants comment. Whether or not these findings represent different levels of contamination with *C. jejuni* is uncertain, but since it is possible that some foods are more highly contaminated than others, this might help to explain these observations (i.e. it is not the food items *per se*, but rather the contamination levels that are important).

The direction of association with the water-exposure variables and in particular the dose-response relationship between drinking unboiled tap water and presenting with vomiting and/or bloody diarrhoea were intriguing. Case–case comparisons, as used in this study, should not be used to make statements about the magnitude or direction of population risk (McCarthy & Giesecke, 1999; Gillespie *et al.*, 2002). Nevertheless, finding a dose-response relationship adds weight to an association between an exposure and disease (Hill, 1965), suggesting that there might be a real effect on clinical presentation. We cannot be absolutely certain, however, whether increased consumption of unboiled tap water was a cause of infection (and hence symptoms) or a consequence of it.

Table 2. Independent risk exposures for reported vomiting and/or bloody diarrhoea in *C. jejuni* infection

<table>
<thead>
<tr>
<th>Exposure</th>
<th>OR</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female gender</td>
<td>1.25</td>
<td>1.07</td>
<td>1.46</td>
<td>0.01</td>
</tr>
<tr>
<td>Infants</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–4 years</td>
<td>0.37</td>
<td>0.12</td>
<td>1.13</td>
<td>0.08</td>
</tr>
<tr>
<td>5–9 years</td>
<td>0.23</td>
<td>0.07</td>
<td>0.74</td>
<td>0.01</td>
</tr>
<tr>
<td>10–17 years</td>
<td>0.20</td>
<td>0.06</td>
<td>0.63</td>
<td>0.01</td>
</tr>
<tr>
<td>18–64 years</td>
<td>0.17</td>
<td>0.06</td>
<td>0.50</td>
<td><0.001</td>
</tr>
<tr>
<td>≥65 years</td>
<td>0.10</td>
<td>0.03</td>
<td>0.29</td>
<td><0.001</td>
</tr>
<tr>
<td>Poultry other than chicken</td>
<td>1.26</td>
<td>1.03</td>
<td>1.54</td>
<td>0.02</td>
</tr>
<tr>
<td>Pre-packed sandwiches</td>
<td>1.20</td>
<td>1.02</td>
<td>1.41</td>
<td>0.03</td>
</tr>
<tr>
<td>Sausages</td>
<td>1.18</td>
<td>1.00</td>
<td>1.39</td>
<td>0.05</td>
</tr>
<tr>
<td>Salad</td>
<td>0.79</td>
<td>0.65</td>
<td>0.96</td>
<td>0.02</td>
</tr>
<tr>
<td>Cheese</td>
<td>0.81</td>
<td>0.66</td>
<td>0.99</td>
<td>0.04</td>
</tr>
<tr>
<td>Fish and shellfish</td>
<td>0.79</td>
<td>0.67</td>
<td>0.93</td>
<td><0.001</td>
</tr>
<tr>
<td>Engineering work/supply problems*</td>
<td>1.52</td>
<td>1.10</td>
<td>2.11</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Glasses of water† drunk daily				
none	1			
One to four	1.29	1.00	1.67	0.05
Five to nine	1.79	1.33	2.40	<0.001
≥10	2.02	1.10	3.70	0.02
HS37 versus other serotypes	0.66	0.46	0.94	0.02

*In relation to mains water.
†Unboiled tap water.
Outbreaks of Campylobacter infection linked with municipal water supplies have been reported in the past (Communicable Disease Surveillance Centre, 2000a; Melby et al., 1991; Mentzing, 1981; Palmer et al., 1983; Vogt et al., 1982). In all of these studies, either the water supply was unchlorinated (Melby et al., 1991; Mentzing, 1981) or a serious challenge to a chlorinated supply occurred prior to the outbreak (Communicable Disease Surveillance Centre, 2000a; Palmer et al., 1983; Vogt et al., 1982). Case-control studies of sporadic infection have failed to identify municipal mains water as a source of infection (Adak et al., 1995; Eberhart-Phillips et al., 1997; Kaperud et al., 1992; Neal & Slack, 1997; Rodrigues et al., 2001). This might represent a negligible/zero risk, or might relate to the high prevalence of exposure to drinking mains water amongst the general population in many countries, making an effect difficult to detect.

Under current UK regulations, drinking water supplied for domestic purposes or to food production premises should be regarded as wholesome if it does not contain any microorganisms or parasites at a concentration or value that would constitute a potential danger to human health (Department of the Environment, Transport and the Regions, 2000). Indicator organisms (historically coliforms and Escherichia coli, but current legislation includes enterococci) are used to ensure this quality and to assess the effectiveness of water treatment (especially disinfection). However, indicator organisms such as E. coli might not be an adequate indicator for the presence of campylobacters in water (Environment Agency, 2002), and statutory testing for campylobacters is not undertaken.

There was only one (inverse) association between infecting serotype and presentation with vomiting and/or bloody diarrhoea in this study. This suggests, perhaps, that there is no fundamental relationship between pathogenicity and expression of surface antigens detected by phenotyping (Frost et al., 1998). Further work on the genetic basis of pathogenesis could be undertaken by the molecular subtyping of the isolates referred in this study.

Conclusions

Vomiting and/or bloody diarrhoea characterized the more severe end of the disease spectrum, as evidenced by a longer illness and increased hospital admissions. Host susceptibility might be important, as witnessed by strongly age-related symptom presentation. Infective dose might also be a factor. The role of unboiled tap water as a potential source of C. jejuni infection in England and Wales requires further investigation.

ACKNOWLEDGEMENTS

This work was presented in part in a poster at CHRO 2003, Twelfth International Workshop on Campylobacter, Helicobacter and Related Organisms, 6–10 September 2003, Aarhus, Denmark. Thanks are extended to Dr Sally Millership for comments on this manuscript.

Membership of the Campylobacter Sentinel Surveillance Scheme Steering Committee:

Mr A. Charlett (Head, Statistics, Modelling and Bioinformatics, HPA Centre for Infections); Dr J. M. Cowden (Consultant Epidemiologist, Health Protection Scotland); Mrs J. A. Frost (Welsh Assembly, Cardiff); Mr I. A. Gillespie (Clinical Scientist, Environmental and Enteric Diseases Department, HPA Centre for Infections); Ms J. Millward (Principal Environmental Health Officer, Birmingham City Council); Dr K. R. Neal, (Clinical Reader in the Epidemiology of Communicable Diseases, Division of Epidemiology and Public Health, University of Nottingham); Professor S. J. O’Brien (Division of Medicine and Neuroscience, Manchester University); Dr M. J. Painter (Consultant in Communicable Disease Control, Manchester Health Authority); Professor Q. Syed (Regional Director, HPA North West); Dr D. Tompkins (Regional Microbiologist, HPA Yorkshire and the Humber).

REFERENCES

parison of Campylobacter coli and Campylobacter jejuni infection: a
Health Protection Agency (2005). Campylobacter spp. Laboratory
Hill, A. B. (1965). The environment and disease: association or
Kapperud, G., Skjerve, E., Bean, N. H., Ostroff, S. M. & Lassen, J.
(1992). Risk factors for sporadic Campylobacter infections: results of
a case-control study in southeastern Norway. J Clin Microbiol 30,
3117–3121.
King, E. O. (1962). The laboratory recognition of Vibrio fetus and a
closely related vibrio isolated from human cases of vibriosis. Ann N Y
Acad Sci 90, 700.
Lambert, M. E., Schofield, P. F., Ironside, A. G. & Mandal, B. K.
McCarthy, N. & Giesecke, J. (1999). Case–case comparisons to
study causation of common infectious diseases. Int J Epidemiol 28,
764–768.
Melby, K., Gondrosen, B., Gregusson, S., Ribe, H. & Dahl, O. P.
151–156.
drugs and other risk factors for campylobacter gastro-enteritis in
Palmer, S. R., Gully, P. R., White, J. M., Pearson, A. D.,
Water-borne outbreak of campylobacter gastroenteritis. Lancet 1,
287–290.
Rodrigues, L. C., Cowden, J. M., Wheeler, J. G. & 7 other authors
factors for cases of infectious intestinal disease with Campylobacter
jejuni infection. Epidemiol Infect 127, 185–193.
miscellaneous enteropathogenic and food-poisoning bacteria. In
bowel of breast-fed and formula-fed infants during the first year of
intestinal disease in England: what risk factors for presentation to
general practice tell us about potential for selection bias in case-control studies of reported cases of diarrhoea. Int J Epidemiol 1,
99–105.
The Campylobacter Sentinel Surveillance Scheme Collaborators
(2003). Ethnicity and Campylobacter infection: a population-based
The Food Standards Agency (2000). Microbiological findings. In
A Report of the Study of Infectious Intestinal Disease in England,
Thwaites, R. T. & Frost, J. A. (1999). Drug resistance in Campylo-
bacter jejuni, C. coli and C. lari isolated from humans in north west
role of conceptual frameworks in epidemiological analysis: a
& Witherell, L. (1982). Campylobacter enteritis associated with
intestinal disease in England: rates in the community,
preventing to general practice and reported to national surveillance.
BMJ 318, 1046–1050.