Epidemiology of *Burkholderia cepacia* complex species recovered from cystic fibrosis patients: issues related to patient segregation

Andrew McDowell,1 Eshwar Mahenthiralingam,2 Kerstin E. A. Dunbar,1 John E. Moore,1 Mary Crowe1 and J. Stuart Elborn3

1,2Department of Bacteriology, Northern Ireland Public Health Laboratory1 and Northern Ireland Regional Adult Cystic Fibrosis Centre3, Belfast City Hospital, Belfast BT9 7AB, UK
2Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3US, UK

Studies of the prevalence of *Burkholderia cepacia* complex species amongst cystic fibrosis (CF) patients in different geographical regions, and the association between cross-infection and putative transmissibility markers, will further our understanding of these organisms and help to address infection-control issues. In this study, *B. cepacia* complex isolates from CF patients in different regions of Europe were analysed. Isolates were examined for *B. cepacia* complex species and putative transmissibility markers [cable pilin subunit gene (*cblA*) and the *B. cepacia* epidemic strain marker (BCESM)]. Sporadic and cross-infective strains were identified by random amplification of polymorphic DNA (RAPD). In total, 79% of patients were infected with *Burkholderia cenocepacia* (genovar III), 18% with *Burkholderia multivorans* (genovar II) and less than 5% of patients with *B. cepacia* (genovar I), *Burkholderia stabilis* (genovar IV) or *Burkholderia vietnamiensis* (genovar V). The *cblA* and BCESM transmissibility markers were only detected in strains of *B. cenocepacia*. The BCESM was a more sensitive marker for transmissible *B. cenocepacia* strains than *cblA*, although sporadic *B. cenocepacia* strains containing the BCESM, but lacking *cblA*, were also observed. Furthermore, clusters of cross-infection with transmissibility marker-negative strains of *B. multivorans* were identified. In conclusion, *B. cenocepacia* was the greatest cause of cross-infection, and the most widely distributed *B. cepacia* complex species, within these CF populations. However, cross-infection was not exclusive to *B. cenocepacia* and *cblA* and the BCESM were not absolute markers for transmissible *B. cenocepacia*, or other *B. cepacia* complex strains. It is therefore suggested that CF centres cohort patients based on the presence or absence of *B. cepacia* complex infection and not on the basis of transmissibility marker-positive *B. cenocepacia* as previously suggested.

INTRODUCTION

Burkholderia cepacia has emerged as a life-threatening cause of infection in patients with cystic fibrosis (CF). Strains of *B. cepacia* can be highly transmissible, resulting in patient-to-patient spread within and between CF centres (Govan et al., 1993). To date, the most effective strategy to combat *B. cepacia* infection has been the strict segregation of infected patients. Although successful, the introduction of such a policy has proved controversial and unpopular with many CF patients. Furthermore, segregation will not prevent sporadic acquisition of *B. cepacia* complex organisms from natural environments (LiPuma et al., 2002).

To complicate the clinical problems associated with *B. cepacia* infection, polyphasic taxonomic studies have now discovered that *B. cepacia* is a complex of nine genetically distinct species, all capable of causing CF-related infections (Mahenthiralingam et al., 2002). Putative transmissibility markers for *B. cepacia* complex bacteria have now also been identified. These markers include the cable pilin subunit gene (*cblA*), which encodes a giant cable-like pilus that facilitates adherence to respiratory mucus (Sajjan et al., 1995), and the *B. cepacia* epidemic strain marker (BCESM), a 1.4-kb open reading frame with homology to several negative transcriptional regulatory genes (Mahenthiralingam et al., 1997).

Initial studies by Vandamme et al. (1997) revealed that *Burkholderia cenocepacia* (formerly genomovar III) was the predominant species amongst their CF-related *B. cepacia* complex isolates. Further investigations by Clode et al.
was as described before (McDowell et al., 2000). In addition to culture-based analyses, PCR-based detection and identification of B. cepacia complex species directly from patients’ sputum samples (where applicable) was also carried out in parallel, as described previously (McDowell et al., 2001).

Genotyping. All B. cepacia complex isolates were genetically typed by RAPD, using the 10-base oligonucleotide primer 272, as described previously (Mahenthiralingam et al., 1996). RAPD fingerprints were compared visually and with the aid of computer analysis (GelCompar version 3.10 for Windows). Strains presumptively identified as ET-12 were confirmed by macrorestriction of whole genomic DNA with the restriction enzyme SpeI, followed by PFGE, as described previously (Vandamme et al., 2000). Profiles were compared with the J2315 Edinburgh index strain for the ET-12 lineage. PFGE was carried out with separation conditions of two cycles of 6 V cm⁻¹, with cycle 1 pulsing from 1 to 40 s over 8 h, and cycle 2 from 30 to 90 s over 16 h.

Detection of putative transmissibility markers. PCR-based detection of the cblA gene and the BCESM were as described previously (Sajjan et al., 1995; Mahenthiralingam et al., 1997). To assess the presence and stability of the BCESM and cblA for cross-infective isolates identified by genotyping and epidemiological data, sensitivity and specificity values were determined. Sensitivity was calculated as the number of cross-infective isolates positive for each marker, expressed as a percentage of the total number of cross-infective isolates. Specificity was calculated as the number of sporadic isolates negative for each marker, expressed as a percentage of the total number of sporadic isolates.

RESULTS

Prevalence of B. cepacia complex species

Table 1 summarizes the total distribution of B. cepacia complex species amongst isolates recovered from 131 CF patients attending a total of 14 CF centres in different regions of Europe. Using a combination of rRNA and recA-based PCR protocols, 79 % of isolates were identified as B. cenocepacia (genomovar III), while 18 % of samples were B. multivorans (genomovar II). The remaining isolates were identified as B. cepacia (genomovar I), B. stabilis (genomovar IV) or B. vietnamiensis (genomovar V). recA analysis of our B. cenocepacia isolates revealed that 91 % were B. cenocepacia recA lineage III-A, while the remaining 9 % were identified as B. cenocepacia recA lineage III-B. Within each geographical region, B. cenocepacia was also the predominant B. cepacia complex species responsible for infection amongst the patient population (Table 2).

Genotyping and putative transmissibility markers

Cross-infected and sporadic B. cepacia complex strains were identified by RAPD, and their relationship with putative transmissibility markers was examined (Table 3). Analysis of the isolates identified the same B. cenocepacia recA lineage III-A strain as the cause of infection in 58 (44 %) patients. Of these isolates, a total of 57 (98 %) contained the cblA and BCESM putative transmissibility markers, a feature characteristic of the highly transmissible ET-12 (multilocus enzyme electrophoresis type 12) lineage (RAPD group 02).
One clonal isolate (2%) was PCR-negative for the \(\text{cblA} \) gene, but did contain the BCESM. Confirmation that isolates were indeed the ET-12 strain of \(B. \) cenocepacia \(\text{recA} \) lineage III-A was achieved by macrorestriction analysis of whole genomic DNA followed by PFGE (Fig. 1). The ET-12 clonal lineage was found amongst CF patients in Northern Ireland and Great Britain. RAPD analysis of isolates from a mainland European CF centre revealed 33 patients cross-infected with a \(B. \) cenocepacia \(\text{recA} \) lineage III-A strain highly distinct from ET-12. This strain contained the BCESM, but not \(\text{cblA} \). All remaining \(B. \) cenocepacia \(\text{recA} \) lineage III-A isolates were genotypically distinct and PCR-positive for the BCESM, but negative for \(\text{cblA} \). All \(B. \) cenocepacia \(\text{recA} \) lineage III-B isolates had unique genetic fingerprints. None of these sporadic strains had \(\text{cblA} \), but five did contain the BCESM. In addition to the detection of transmissible strains of \(B. \) cenocepacia, RAPD analysis also identified two separate clusters of \(B. \) multivorans cross-infection within a CF centre.

Table 1. Distribution of the \(B. \) cepacia complex species and putative transmissibility markers amongst \(B. \) cepacia complex isolates recovered from 131 CF patients

Numbers in parentheses represent percentages of \(B. \) cepacia complex-infected patients.

<table>
<thead>
<tr>
<th>Species</th>
<th>Total number (%)</th>
<th>Transmissibility marker genes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\text{cblA-})positive (%)</td>
</tr>
<tr>
<td>(B.) cepacia</td>
<td>1 (0.76)</td>
<td>0</td>
</tr>
<tr>
<td>(B.) multivorans</td>
<td>23 (17.6)</td>
<td>0</td>
</tr>
<tr>
<td>(B.) cenocepacia*</td>
<td>103 (78.6)</td>
<td>57 (43.5)</td>
</tr>
<tr>
<td>(B.) stabilis</td>
<td>1 (0.76)</td>
<td>0</td>
</tr>
<tr>
<td>(B.) vietnamiensis</td>
<td>3 (2.29)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>131 (100)</td>
<td>57 (43.5)</td>
</tr>
</tbody>
</table>

* Ninety-four (91.3%) \(B. \) cenocepacia strains belong to \(\text{recA} \) lineage III-A and the remaining nine (8.7%) are \(\text{recA} \) lineage III-B.

Table 2. Distribution of the \(B. \) cepacia complex species within CF centres in different geographical regions

\(B. \) cepacia complex species are abbreviated as follows: \(\text{Bc}, B. \) cepacia; \(\text{Bm}, B. \) multivorans; \(\text{Bcnp}, B. \) cenocepacia; \(\text{Bs}, B. \) stabilis; and \(\text{Bv}, B. \) vietnamiensis.

<table>
<thead>
<tr>
<th>Geographical region</th>
<th>(\text{Bc})</th>
<th>(\text{Bm})</th>
<th>(\text{Bcnp})</th>
<th>(\text{Bs})</th>
<th>(\text{Bv})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>10</td>
<td>39</td>
<td>1</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>1</td>
<td>13</td>
<td>29</td>
<td>3</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Mainland Europe</td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>23</td>
<td>103</td>
<td>1</td>
<td>3</td>
<td>131</td>
</tr>
</tbody>
</table>

Table 3. Distribution of putative transmissibility markers amongst \(B. \) cepacia complex species recovered from 131 CF patients

\(B. \) cepacia complex species are abbreviated as follows: \(\text{Bc}, B. \) cepacia; \(\text{Bm}, B. \) multivorans; \(\text{Bcnp}, B. \) cenocepacia; \(\text{Bs}, B. \) stabilis; and \(\text{Bv}, B. \) vietnamiensis.

<table>
<thead>
<tr>
<th>Strains and markers</th>
<th>(\text{Bc})</th>
<th>(\text{Bm})</th>
<th>(\text{Bcnp})</th>
<th>(\text{Bs})</th>
<th>(\text{Bv})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-infection</td>
<td>–</td>
<td>6</td>
<td>91</td>
<td>–</td>
<td>–</td>
<td>97</td>
</tr>
<tr>
<td>(\text{cblA})</td>
<td>–</td>
<td>–</td>
<td>91</td>
<td>–</td>
<td>–</td>
<td>91</td>
</tr>
<tr>
<td>BCESM</td>
<td>–</td>
<td>12</td>
<td>–</td>
<td>3</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Sporadic</td>
<td>1</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>(\text{cblA})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>BCESM</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
</tbody>
</table>

One clonal isolate (2%) was PCR-negative for the \(\text{cblA} \) gene, but did contain the BCESM. Confirmation that isolates were indeed the ET-12 strain of \(B. \) cenocepacia \(\text{recA} \) lineage III-A was achieved by macrorestriction analysis of whole genomic DNA followed by PFGE (Fig. 1). The ET-12 clonal lineage was found amongst CF patients in Northern Ireland and Great Britain. RAPD analysis of isolates from a mainland European CF centre revealed 33 patients cross-infected with a \(B. \) cenocepacia \(\text{recA} \) lineage III-A strain highly distinct from ET-12. This strain contained the BCESM, but not \(\text{cblA} \). All remaining \(B. \) cenocepacia \(\text{recA} \) lineage III-A isolates were genotypically distinct and PCR-positive for the BCESM, but negative for \(\text{cblA} \). All \(B. \) cenocepacia \(\text{recA} \) lineage III-B isolates had unique genetic fingerprints. None of these sporadic strains had \(\text{cblA} \), but five did contain the BCESM. In addition to the detection of transmissible strains of \(B. \) cenocepacia, RAPD analysis also identified two separate clusters of \(B. \) multivorans cross-infection within a CF centre. One cluster was found amongst CF patients in Northern Ireland and Great Britain. RAPD analysis of isolates from a mainland European CF centre revealed 33 patients cross-infected with a \(B. \) cenocepacia \(\text{recA} \) lineage III-A strain highly distinct from ET-12. This strain contained the BCESM, but not \(\text{cblA} \). All remaining \(B. \) cenocepacia \(\text{recA} \) lineage III-A isolates were genotypically distinct and PCR-positive for the BCESM, but negative for \(\text{cblA} \). All \(B. \) cenocepacia \(\text{recA} \) lineage III-B isolates had unique genetic fingerprints. None of these sporadic strains had \(\text{cblA} \), but five did contain the BCESM. In addition to the detection of transmissible strains of \(B. \) cenocepacia, RAPD analysis also identified two separate clusters of \(B. \) multivorans cross-infection within a CF centre. One cluster
involved two patients and the other a total of four patients. Both strains of *B. multivorans* responsible for these clusters of cross-infection were PCR-negative for *cblA* and the BCESM. All remaining isolates of *B. multivorans*, as well *B. vietnamiensis*, had unique genotypes and were negative for both putative transmissibility markers.

For cross-infective *B. cenocepacia* isolates, the BCESM was found to have a sensitivity of 100% compared with 63% for the *cblA* gene. For all isolates implicated in patient-to-patient spread, the BCESM had a sensitivity of 94% compared with 59% for the *cblA* gene. The specificity of the BCESM for the detection of cross-infective *B. cenocepacia* was 33% compared with 100% for *cblA*. The overall specificity of the BCESM for the detection of cross-infective isolates was 76% compared with 100% for *cblA*.

DISCUSSION

The emergence of *B. cepacia* complex organisms as life-threatening pathogens amongst patients with CF has proved a tremendous challenge for the clinician. For patients colonized with bacteria of the *B. cepacia* complex, management of infection under the same principles adopted for patients with chronic *Pseudomonas aeruginosa* is complicated by the highly transmissible nature of certain *B. cepacia* complex strains. In response to this problem, CF centres have now adopted strict infection-control policies that segregate *B. cepacia* complex-infected patients from non-infected individuals. Although highly effective, stringent segregation has proved unpopular with many patients and generated new psychosocial and economic issues for CF centres. PCR-based strategies to refine the segregation of patients based on the properties of the infecting *B. cepacia* complex strain rather than the presence or absence of the organism have been recommended (Clode et al., 2000). In particular, for CF centres in the UK it was suggested that only transmissibility marker-positive *B. cenocepacia*-infected patients need to be segregated. Before such a proposal could be implemented, especially within a broader geographical context, further multi-centre studies on the distribution of *B. cepacia* complex species amongst CF patients in different localities, and the relationship between putative transmissibility markers and cross-infective strains, are required.

In the present study, we examined *B. cepacia* complex isolates recovered from CF patients in different regions of Europe. Most isolates were identified as *B. cenocepacia*, with the majority belonging to the *recA* lineage III-A. Similar results have also been described in Canada (Speert et al., 2002) and Italy (Agodi et al., 2001), while in the USA the majority of *B. cenocepacia* isolates belong to the *recA* lineage III-B (LiPuma et al., 2001). Although the basis of variations between the USA and other geographical regions in terms of the prevalence of *B. cenocepacia recA* lineage is currently unclear, one possibility may be the nature of the transmissible *B. cenocepacia* strains found in these different locations. In our study, the highly transmissible ET-12 strain was identified amongst 56% of *B. cenocepacia* isolates. This strain was only recovered from patients attending CF centres in Northern Ireland and Great Britain (UK). The ET-12 strain appears to have first infected patients in Toronto before spreading across Canada, where it is the predominant *B. cenocepacia* lineage (Speert et al., 2002). It is presumed that the ET-12 lineage was first introduced into the UK CF population as a consequence of contact at CF summer camps, with the Edinburgh index case of this strain first observed in 1989 (Govan et al., 1993). Infection with a strain closely related to ET-12 has now also been described amongst CF patients in Italy (Agodi et al., 2001). One characteristic feature of the ET-12 strain is the presence of both *cblA* and the BCESM. However, during our study, we identified one ET-12 isolate that was negative for the *cblA* gene. Although genetic instability of the BCESM has been described (Mahenthiralingam et al., 1997; Agodi et al., 2001), instability of the *cblA* gene has only recently been observed (Agodi et al., 2001). Organisms of the *B. cepacia* complex have large and complex genomes with up to three or four replicons, as well as multiple insertion sequences (Lessie et al., 1996). The observation that *cblA* and the BCESM possibly reside on unstable chromosomal regions of the genome raises further important questions regarding the sole use of these putative markers for clinical management of patients within CF centres.

In addition to the detection of the highly transmissible ET-12 strain, we also identified a strain of *B. cenocepacia recA* lineage III-A which was responsible for multiple cross-infections amongst patients attending a CF centre in mainland Europe. This strain, which was genotypically distinct from ET-12, lacked the *cblA* gene but did contain the BCESM. Cross-infection with BCESM-positive *B. cenocepacia* RAPD types other than ET-12 has been observed before, such as the epidemic strain of *B. cenocepacia* responsible for transmission between CF patients in Manchester, UK (Haworth et al., 1997). Studies have now also identified cross-infection amongst CF patients due to *cblA*- and BCESM-negative *B. cenocepacia* strains, such as the epidemic PHDC strain which infects CF patients in the mid-Atlantic region of the USA (Chen et al., 2001). Such studies further highlight the caveats associated with sole reliance on these markers for identification, and infection-control management, of CF patients infected with potentially cross-infective *B. cenocepacia* strains.

Within our CF study population we also observed clusters of cross-infection amongst patients due to *B. multivorans*. None of these strains carried the *cblA* and BCESM putative transmissibility markers. As our understanding of *B. cepacia* complex infection has continued to grow, it has become clear that serious episodes of cross-infection due to *B. cepacia* complex species other than *B. cenocepacia* can arise. Cross-infection due to *B. multivorans* has been reported amongst CF patients in the UK and France (Whiteford et al., 1995; Segonds et al., 1999). Also, the first epidemic strain identified as the cause of patient-to-patient spread of *B. cepacia* has now been identified as *Burkholderia dolosa* (genovar VI) (LiPuma et al., 2001). Very recently, reports of potential...
cross-infection with *B. stabilis* amongst 13 CF patients in the Slovak Republic, and the demonstration of transmission of *B. cepacia* (genomovar I), *B. multivorans* and *B. dolosa*, provides striking evidence of the danger in confining segregation to *B. cenocepacia*-infected patients only (Biddick et al., 2003; Drevinek et al., 2003).

Overall, our sensitivity and specificity calculations revealed that neither the BCESM nor *cblA* were absolute markers for spread amongst CF patients. The BCESM was present in sporadic isolates of *B. cenocepacia*, and absent from cross-infective *B. multivorans* isolates, while *cblA* was only found in the transmissible ET-12 strain of *B. cenocepacia*. However, previous studies have identified the presence of *cblA* gene sequences in a small number of *B. cepacia* (genomovar I) isolates recovered from CF patients in the USA (LiPuma et al., 2001). The majority of these isolates were genotypically distinct and had sequences with high identity (98.2–100 %) to each other, but lower identity (87.8–88.4 %) to the ET-12 *cblA* sequence (Sajjan et al., 2002). Interestingly, electron microscopy revealed the complete absence of pilus expression by these isolates. Therefore, while variant *cblA*-containing sequences have been found amongst a small number of sporadic non-ET-12 strains, the gene appears to be relatively specific for the ET-12 strain of *B. cenocepacia* and not for transmissible *B. cepacia* complex strains in general.

In conclusion, our data demonstrate the prevalence of *B. cenocepacia* amongst *B. cepacia* complex–infected CF patients. Cross-infection was not solely confined to *B. cenocepacia*, and *cblA* and the BCESM were not absolute markers for transmissible strains. We would therefore recommend that CF centres cohort patients based on the presence or absence of *B. cepacia* complex infection, and not on the basis of transmissibility marker–positive *B. cenocepacia*. This is in agreement with the UK CF Trust’s guidelines on cross-infection control (http://www.cftrust.org.uk/index.jsp). Further segregation of patients infected with *B. multivorans* (and other *B. cepacia* complex species) from those infected with *B. cenocepacia* is also prudent to reduce the risk of cross-infection and superinfection (Mahenthiralingam et al., 2001).

ACKNOWLEDGEMENTS

This work was supported by grants (PJ470 and PJ472) from the Cystic Fibrosis Trust, Bromley, UK. We would also like to acknowledge the various CF centres involved in this study for their cooperation and submission of *B. cepacia* complex isolates to our laboratory.

REFERENCES

