Variations in 10 putative uropathogen virulence genes among urinary, faecal and peri-urethral Escherichia coli

CARL F. MARRS, LIXIN ZHANG, PATRICIA TALLMAN, SHANNON D. MANNING, PATRICIA SOMSELM*, PAUL RAZ†, RAUL COLODNER‡, MARIA E. JANTUNEN§, ANJA SIITONEN∥, HARRI SAXEN¶ and BETSY FOXMAN

Department of Epidemiology, University of Michigan School of Public Health, 109 Observatory Street, Ann Arbor, MI 48109, *Bureau of Laboratories, Michigan Department of Community Health, 3350 N. Martin Luther King Jr Blvd, PO Box 30035, Lansing, MI 48909, †Infectious Disease Unit and ‡Microbiology Laboratory, Ha’Emek Medical Center, 18101 Afula, Israel and †Faculty of Medicine, Technion, Haifa, Israel, §Hospital for Children and Adolescents, University of Helsinki and ¶Laboratory of Enteric Pathogens, National Public Health Institute, Mannerheimintie 186, FIN-00380, Helsinki, Finland

A total of 868 isolates was screened from seven different collections of organisms from previous studies – pyelonephritis in children aged 1–24 months; first, second and recurring urinary tract infection (UTI) in women aged 18–39 years; UTI in women aged 40–65 years and peri-urethral and faecal isolates from women aged 18–39 years – for the presence of 10 potential Escherichia coli UTI virulence genes. Previously reported differences between the frequency of these genes in UTI compared with faecal isolates were confirmed and extended. A single virulence signature (strains containing aer, kpsMT, ompT, fim and papG2) occurred in 29% of the pyelonephritic isolates, but in no more than 11% of the other collections. Peri-urethral isolates were found to have frequencies of these 10 genes that differed from those found for both UTI and faecal isolates.

Introduction

Urinary tract infection (UTI) is one of the most commonly acquired bacterial infections in ambulatory and hospitalised populations; 11% of all women aged ≥18 years in the USA have a UTI each year [1]. Most UTIs among otherwise healthy women are caused primarily by Escherichia coli. Certain O:K:H serotypes and virulence factors occur more frequently in urinary than faecal isolates, suggesting that uropathogenic E. coli are different from normal bowel inhabitants [2]. However, they are also a diverse group: 20 O:K:H serotypes have been associated with pyelonephritis [2]. Furthermore, when first-time UTI isolates were grouped by the presence or absence of nine putative UTI virulence genes, 36 groups were observed [3].

Dot-blot hybridisation was used earlier to screen several E. coli isolate collections for the presence or absence of some genes potentially associated with UTI: aerobactin (aer); group II capsule (kpsMT); group III capsule (capH3); cytotoxict necrotising factor 1 (cnf1); Dr-binding adhesins (drb); haemolysin (hly); outer-membrane protein T (ompT); P-pili family of fimbrae (p pil), further characterised by identification of three subclasses – papG26 (class I), papG2AD (class II) and ppsG38 (class III); S fimbrial adhesin (sfa); and type 1 pilus (fim). A previous report described the genotypic distribution of these virulence genes among urinary E. coli isolates from women with their first UTI and the relationships among these factors [3], as well as the 6-month risk of a second UTI according to the presence of each virulence factor [4]. This report describes the distribution of these genes in E. coli isolates from seven different collections: (1) pyelonephritis in children aged 1–24 months, (2) urinary isolates from women aged 18–39 years with first-time UTI, (3) urinary isolates from the same women who had a second UTI within a 6-month period, (4) urinary isolates from women aged 18–39 years with recurring UTI (more than three infections in the past year), (5) urinary isolates from women aged 40–65 years with UTI, (6) peri-urethral isolates from women aged 18–39

Received 23 April 2001; revised version accepted 13 July 2001.
Corresponding author: Dr C. F. Marrs.
years without UTI, and (7) faecal isolates from women aged 18–39 years without UTI.

Materials and methods

Sample collection

Pyelonephritic isolates (n = 153) were collected from children aged 1–24 months from five hospitals in Finland, as described previously [5]. All isolates from women aged 18–39 years were collected at student health services, either at the University of Michigan (UM) or the University of Texas at Austin (UT). Women with first UTI (n = 285) were followed and second UTI isolates were obtained from those who had a second UTI within 6 months of the first (n = 45) [6]. Recurring UTI isolates were collected from women aged 18–39 years at UM Health Services who reported a history of three or more UTIs in the past year (n = 27). Peri-urethral and faecal isolates were obtained from 318 women presenting without UTI to the gynaecology clinic at UM for pelvic examinations. UTI isolates from women aged 40–65 years were collected at Battle Creek Regional Medical Laboratories in Michigan (n = 60) and the Infectious Disease Unit at Ha’Emek Medical Center in Afula, Israel (n = 58) [7].

A UTI was defined by the combination of a urine culture of ≥1000 cfu/ml of urine in the presence of one or more urinary symptoms and a clinical diagnosis. Pyelonephritis was defined by the combination of a urine culture of ≥10^5 cfu/ml of urine in the presence of two out of three of the following: pyuria (leucocyte count >10/mm^3), fever ≥38.0°C or C-reactive protein (CRP) >25 mg/L.

Bacterial strains, DNA probes and dot blots

The digoxigenin-labelled DNA gene probes and controls for DNA hybridisation have been described previously [3, 4, 8, 9]. PCR was used to generate probes specific to the papaGAD, papaGAd, and papaGAd, P-pili adhesin subtypes as described previously [9, 10]. Also, as in previous studies, the presence or absence of virulence factors was determined by dot-blot hybridisation [3].

Data analysis

Frequencies of virulence factors were described by means of sample proportions. Differences in proportions among collections were tested by the χ^2 test. All analyses were performed with SAS version 6.10 [11].

Results and discussion

This study screened isolates for nine virulence genes thought to be important in *E. coli* mediated UTI: *aer*, *kpsMT*, *cnf1*, *drb*, *hly*, *ompT*, *pff*, *sfa* and *fim*. The P-pili were further subtyped into the three classes of adhesins, *papaGAD*, *papaGAd*, and *papaGAd*. The study also tested for the presence of *cnfIII* genes, a factor of unknown importance in UTI. The *aer*, *kpsMT* and *papaGAd* genes occurred significantly more often (p < 0.001–0.004) among pyelonephritic isolates than in any of the other collections (Table 1). The *ompT* gene occurred significantly more frequently among pyelonephritic isolates than among first (p < 0.001) or second (p < 0.001) UTI, peri-urethral (p < 0.001), or faecal (p < 0.001) isolates. The *fim* gene occurred in virtually all isolates from all collections, with *ompT* and *kpsMT*, respectively, as the next most common genes in all collections.

The distributions observed in this study compare favourably to those of similar clinical populations collected in France [12] and Spain [13]. In France the prevalence of *pff* in 27 children with pyelonephritis was quite similar to this pyelonephritis collection (85.2 versus 82.4%), but *drb* occurred more frequently (18.5% versus 5.9%) and *sfa* less frequently (11.1% versus 31.4%). The French cystitis isolates from women included both first and recurring UTI. If the first, second and recurring UTI isolates in the present study are pooled, the frequencies for *pff*, *drb* and *sfa* (49%, 14.7%, 29.1%) are quite similar to the frequencies observed in the French study (44%, 11.9%, 16.9%). By contrast, among 121 isolates from women in Spain with cystitis [13], expression of haemolysin and CNF1 occurred more frequently than predicted by genotype among first UTI isolates in the present study (50% versus 37.6% and 40% versus 26.6% respectively), but P-fimbrial expression was half the frequency of *pff* genes in the isolates in the present study (22% versus 49.8%). However, *pff* gene expression is under phase variation control, so strains containing P-fimbrial genes often do not express them. The differences in frequencies observed among the Spanish and UM/UT collections might be due to the differences seen in phenotypic versus genotypic detection techniques, but also geographic variation, and the Spanish collection included recurring UTI isolates.

The peri-urethral isolates from women aged 18–39 years without UTI constitute a group distinct from all UTIs (first, second and recurring) and faecal isolates from women in the same age range (Table 1). The *aer* gene occurred less frequently in peri-urethral than in UTI (p = 0.02) or faecal (p = 0.04) isolates. The *drb* gene occurred slightly less frequently in peri-urethral isolates (p = 0.45) than in faecal isolates, and much less frequently than in UTI isolates (p = 0.02). The *cnf1* gene occurred slightly less frequently in peri-urethral (p = 0.59) than in UTI isolates, but significantly more often when compared with faecal isolates (p = 0.003). The *hly* gene also occurred less frequently in peri-urethral than in UTI isolates (p = 0.12), but more frequently than in faecal isolates (p = 0.04). Genes encoding *ompT* (p = 0.17) and *pff* (p = 0.04) were less
common in peri-urethral isolates than in UTI isolates. Finally, \(\text{papGAD}_D\) occurred at lower frequencies in peri-urethral isolates than in either UTI (\(p = 0.02\)) or faecal isolates (\(p = 0.06\)), while \(\text{papG}_{\text{G65}}\) (\(p = 0.008\)) and \(\text{sfA}\) (\(p = 0.03\)) occurred more often in peri-urethral than in faecal strains. As peri-urethral \(E.\ coli\) were somewhat different from uropathogens, it is possible that they cause UTI only if something facilitates their movement, for example, if pushed into the bladder by catheterisation. Peri-urethral \(E.\ coli\) might also protect against colonisation by more virulent strains if urethral colonisation is a necessary prelude to UTI.

Each isolate was assigned a virulence signature \([3, 4, 8]\) based on the presence or absence of each gene tested. When these virulence signatures were compared by collection, only a few virulence signatures made up at least 5% of any collection (Table 2). Results from previous studies showed that \(E.\ coli\) isolated from the same or different sites within the same individual that had the same virulence signature also had identical pulsed-field gel electrophoresis (PFGE) patterns. However, a single virulence signature from a study population may contain many genetically different strains as determined by PFGE (data not shown). Furthermore, the ability of a virulence signature to provide information regarding genetic similarity among strains depends on the number of virulence genes present. For example, virulence signature \(0000000010000\) contains all isolates with the \(\text{fim}\) gene, but lacking all other genes tested. As strains in this signature are mostly defined by what they lack, they are likely to represent a very heterogeneous collection of strains. In contrast, strains with virulence signature \(111111010100\) contain \(\text{sfA}, \text{aer}, \text{kpsMT}, \text{ompT}, \text{hly}, \text{fim}\) and \(\text{papG}_{\text{G65}}\), and thus are likely to be more similar to each other. With these constraints in mind, two of the virulence signatures listed in Table 2 seem to be of particular interest. Signature 11011101001001, containing \(\text{aer}, \text{kpsMT}, \text{ompT}, \text{fim}\) and \(\text{papGAD}_D\), is found twice as often as prevalence ratio \((\text{PR}) = 2.0; \) 95% confidence interval \((\text{CI}) = 1.08–3.81\) in first UTI as in faecal isolates, and nearly six times as often \((\text{PR} = 5.7; \text{CI} = 3.21–9.95)\) in pyelonephritis as in faecal isolates.

Signature 1101111010001, containing \(\text{sfA}, \text{kpsMT}, \text{ompT}, \text{hly}, \text{csgF}, \text{fim}\) and \(\text{papGAD}_D\), is found three times more often in isolates from periurethral \((\text{PR} = 3.4; \text{CI} = 1.45–7.78)\), first UTI \((\text{PR} = 3.1; \text{CI} = 1.65–5.90)\), recurring UTI \((\text{PR} = 3.3; \text{CI} = 1.15–9.59)\) and UTI among older women \((\text{PR} = 3.4; \text{CI} = 1.59–7.07)\) than in faecal isolates. The frequency of this virulence signature is less than twice that of faecal isolates in pyelonephritis \((\text{PR} = 1.9; \text{CI} = 0.89–4.07)\) and second UTI \((\text{PR} = 1.6; \text{CI} = 0.47–5.43)\) isolates, even though it is not statistically significant.

The pyelonephritic strains from children aged 1–24 months were previously shown to contain predominantly the \(\text{papGAD}_D\) (class II) allele \([3]\); additionally, the present study has shown that a substantial portion (29%
of these isolates have a specific virulence signature (1011100010100 containing aer, kpsMT, ompT, fim and pagGAD3, Table 2). The same virulence signature was found in 10–11% of first UTI and recurring UTI isolates, but in only ≈5% of strains in the other four collections. In comparison with these frequencies, the virulence signature 1100111010110 (containing sfa, ompT, hly, cnf1, fim, cap3I, pagGAd3 and prsGAd) of the best studied pyelonephritic strain, 396 [14], is very rare and was present in <1% of all isolates. Strain CFT073, a pyelonephritic strain that is highly virulent in the CBA mouse model of ascending UTI [15], has virulence signature 1111100101000 (containing sfa, aer, kpsMT, ompT, hly, cnf, fim and pagGAd3), which occurred in <7% of strains in the different collections (Table 2). Interpreting the differences between the pyelonephritic and other UTI isolates is problematic, as it was not possible to determine how much of the variation was due to patient age or geographic differences in the sample collections, rather than the differences in the site of disease. To better assess this, future studies should focus on determining the virulence gene distribution among adult pyelonephritic isolates within the same geographic region.

The high degree of heterogeneity found among E. coli colonising the urinary tract, peri-urethral and bowel when classified by the presence or absence of 10 putative uropathogenic genes raises many questions about UTI pathogenesis. Of the virulence genes tested, only fim may be universally required for UTI virulence [16]; however, it is not sufficient on its own, as fim is present in most E. coli but only a subset cause UTI. A better understanding of which E. coli genes contribute to UTI and their role in pathogenesis is required to prevent this common disease.

Informed consent was obtained from all study participants. All US study protocols were approved by the Institutional Review Board at the University of Michigan School of Public Health. Grant support: NIH (DK-35368 (BF), DK-47519 (BF)); the Research Funds of Helsinki University Central Hospital, TYH 8237 and the Foundation for Pediatric Research, Helsinki, Finland. We thank Caesar Brefere, Charlotte Williams and other staff at the University of Michigan Student Health Service and Scott Spear, Shirley Arild, Nell Curtis, Brenda Lucke and other staff at the University of Texas at Austin Student Health Service for bacterial samples. We thank multiple physician groups in Battle Creek, Michigan for supplying bacterial samples: Philip Pracin, Mary Henzik, Kim Martin and staff at DayOne Family Healthcare and Mark Henry, formerly of DayOne; John Collins and staff at Lakeway Family Practice; Diana Colquhoun and staff at Coleman Women’s Center; Peter Chang and Nadine Weisser and staff at Family Health Center; and Carolyn and Timothy Horkstra and staff. We also thank the many others who have helped recruit study participants as well as the study participants themselves. Without them, we would not have these collections.

References

3. Foxman B, Zhang L, Palm K, Tallman P, Mars CF. Bacterial

