DIAGNOSTIC MICROBIOLOGY

Development of a combined filtration-enrichment culture followed by a one-step duplex PCR technique for the rapid detection of Campylobacter jejuni and C. coli in human faecal samples

N. MISAWA, K. KAWASHIMA, H. KAWAMOTO and F. KONDO

Department of Veterinary Public Health, Faculty of Agriculture, Miyazaki University, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan

A new combined filtration-enrichment culture followed by a PCR technique for the rapid detection of Campylobacter jejuni and C. coli in human faeces has been developed. Only bacteria that passed through the membrane could multiply in the enrichment culture; target bacteria were detected by a one-step duplex PCR technique with combinations of primers that are specific for different Campylobacter spp., which should allow for the detection of a mixed infection in a single patient. A Falcon® cell-culture insert and 24-well tissue-culture plates were used. After 2 days, both C. jejuni and C. coli were reliably detected in diluted faeces that were seeded with as few as 10 cells which corresponds to a concentration of 10⁵ cfu/g. Even allowing for the dilution of faecal samples, this represents an increase in sensitivity of two-to-three orders of magnitude over the conventional filtration method.

Introduction

Campylobacter jejuni and C. coli infections have been recognised as major food-borne diseases in developed [1] and developing [2] countries. As faecal or food samples, or both, are usually submitted to the laboratory for isolation of C. jejuni and C. coli, several approaches to isolating these organisms have been developed. [3, 4] Although selective media are used frequently for the primary isolation of campylobacters from faecal samples, selective media supplemented with antimicrobial agents may be inhibitory to some Campylobacter spp. and, therefore, may affect the isolation procedure. For this reason, a filtration method has been adopted to isolate these organisms from faecal samples [5]. However, the disadvantage of this method is its relatively low sensitivity [5]. To solve this problem, the organisms were enriched after filtration. This report describes a new assay in which a filtration-enrichment culture followed by a one-step duplex PCR technique was used for the rapid detection of C. jejuni and C. coli in human faecal samples.

Materials and methods

Filtration-enrichment culture

The filtration-enrichment culture system involved the use of a Falcon® cell-culture insert (Becton Dickinson and Company, Franklin Lakes, USA) and tissue-culture plates. The cell-culture insert consists of a plastic cylinder incorporating a polyethylene terephthalate track-etched membrane with a pore diameter of 0.4 μm. An sample of the enrichment broth was added to each well of a 24-well tissue-culture plate. The cell-culture insert with the diluted faecal sample was placed in a well, and the microtiration plate was incubated under micro-aerobic conditions. Only slender bacteria exhibiting motility and chemotaxis could pass through the membrane and multiply in the enrichment broth, which produced a high sensitivity for the detection of campylobacters. Finally, PCR with DNA extracted by alkaline and heat treatment was performed with two primer pairs. This protocol, which is a single (one-step) reaction method, allowed differentiation between C. jejuni and C. coli.

Bacterial strains

C. jejuni strains 81-176 and C. coli strain JCM2529 were used in this study. To determine the effect of
bacterial motility on detection and recovery, a non-motile flaA flaB mutant (strain 98-248), constructed from strain 81-176 [6], was also used. Their motility was determined on a semi-solid agar plate composed of Brucella Broth (Becton Dickinson) containing agar 0.4%.

Recovery test

To assess the efficacy of the new filtration-enrichment method, the detection and recovery of C. jejuni and C. coli from artificially contaminated human faeces were measured. A fresh faecal specimen was obtained from a Campylobacter-negative person and diluted to 2% with 10 mM phosphate-buffered saline (PBS, pH 7.2). The bacterial cells were diluted serially and seeded into the diluted faeces at concentrations from 10^5 to 10^6 cfu/ml. The spiked faecal sample (100 μl) was added to a cell-culture insert and placed in a well of a 24-well microtiter plate (Becton Dickinson) in which 600 μl of Brucella broth supplemented with bovine fetal serum (Gibco-BRL, Gaithersburg, MD, USA) 5% had been added as an enrichment broth. A non-spiked faecal sample was used as a control. The air under the membrane was removed by tilting the insert. The microtiter plate was incubated in a jar at 37°C for a predetermined period under microaerobic conditions (N₂ 80%, CO₂ 10%, O₂ 5% and H₂ 5%).

One-step duplex PCR technique

The bacterial cells in the enriched culture were harvested by centrifugation (8000 g for 10 min) and resuspended in 25 μl of sterile distilled water. To extract bacterial DNA, 25 μl of 50 mM NaOH were added to the bacterial suspension before it was incubated at 95°C for 5 min. After neutralisation with 4 μl of 1 M Tris-HCl buffer (pH 7.5), the supernate was used as template DNA. One-step duplex PCR was used to enable the detection of both Campylobacter spp. in a single reaction. Primer combinations C1 (5'-CAATAAAGGTAGGATGAATG-3')-C4 (5'-GGGATAGCAGCTAGCTGAT-3') and CC18F (5'-GGATGAGTTCTACAAACCGAG-3')-CC519R (5'-ATAAAGACTATCGTCGC-3') were used to amplify 159-bp and 502-bp fragments for C. jejuni [7] and C. coli [8], respectively. PCR was performed in a DNA thermal cycler (Perkin-Elmer Cetus, Norwalk, USA) in reaction mixtures of 25 μl containing 5 μl of extracted DNA, 2.5 μl of 10X reaction buffer (Qiagen, Tokyo, Japan), 160 nM of each primer, 0.625 U of Taq DNA polymerase (Qiagen) and 250 μM of each deoxynucleotide (Amersham Pharmacia Biotech, Tokyo, Japan). The reaction was initiated by denaturation at 94°C for 1 min, and it was cycled 35 times at 94°C for 30 s annealed at 58°C for 30 s and 72°C for 1 min, with a final incubation at 72°C for 10 min to complete the extension.

Results and discussion

The species-specificity of the PCR process was verified (Fig. 1). The high sensitivity of PCR with known concentrations of bacterial cells was established by the detection of as few as 10^3 cells of both the C. jejuni and C. coli strains used in this study.

The PCR detection limits after the 24-h culture period for each wild-type strain of C. jejuni and C. coli were 10^2 and 10^1 cfu/100 μl of diluted faecal samples seeded in the cell-culture insert, respectively (Fig. 2). After the 48-h culture period, as few as 10 cells spiked in the initial samples could be detected reliably for both species, which corresponds to 10^1 cfu/μl of faeces (Fig. 2). In contrast to the wild type C. jejuni strains 81-176, the afllagellate mutant strain 98-248 was detected only with 10^5 cfu spiked in the initial sample, even after incubation for 72 h, suggesting that the PCR sensitivity depends on bacterial motility (Fig. 2). Although it remains unclear how the non-motile mutant could pass through the membrane when present in higher numbers, the vacuum step for replacing the gas of the jar may affect bacterial passage. No band was amplified from the enrichment cultures of non-spiked faecal samples. The recovery results obtained in three experiments were consistent with these outcomes.

A PCR-based assay for detecting C. jejuni and C. coli that is coupled with filtration enrichment of faecal samples exhibits high sensitivity. It was decided that filtration should be performed first to select bacteria that could pass through the filtration membrane, and that post-enrichment would allow the multiplication of target bacteria, thereby giving high sensitivity even with a low number of campylobacter cells in the faeces. As expected, a high sensitivity of 10^1 cfu/g was achieved in this study. Even allowing for the dilution of faecal samples, this represents an increase in sensitivity of two-to-three orders of magnitude over the conventional filtration method [3,5].

Overall, an efficient detection of campylobacter cells by PCR was obtained within a 48-h culture period at 37°C. Therefore, this assay system could reduce the time needed for diagnosis of confirmed Campylobacter.

Fig. 1. C. jejuni and C. coli species-specific identification by a one-step duplex PCR amplification obtained with C. jejuni- and C. coli-specific primer combinations. Lane 1, C. jejuni 81-176; 2, C. coli 3CM2S29, 3, C. jejuni 81-176 and C. coli 3CM2S29; M, 100-bp DNA size marker.
spp. in faecal samples. The present study used one-step duplex PCR for differentiating both species in a single tube, and the species specificity of the PCR was verified with spiked faecal samples. Patients infected with several different species of Campylobacter have been reported [9,10], so multiplex PCR protocols with combinations of primers that are specific for different Campylobacter spp. should allow for the detection of multiple infection in a single patient. Although the presence of PCR-interfering substances in faecal and food samples has been reported [11,12], the results of the present study indicate that a DNA extraction protocol involving alkaline-heat treatment of bacterial cells that pass through the membrane does not affect the PCR reaction. The simplification of the DNA recovery process for PCR amplification should also be emphasised.

It is important to isolate Campylobacter spp. in pure culture after filtration-enrichment culture, and the present technique may allow this. Improved isolation techniques have led to better isolation rates of these organisms [13] and filtration methods have been shown to be among the best available [3].

In a previous study, a short enrichment culture of pigeon faeces was performed before filtration to improve isolation rates [14]. Atypical Campylobacter spp. from stools are difficult to culture on the selective media that are used for C. jejuni and C. coli [3,4] and multiple techniques have been combined to improve the isolation rate of species other than C. jejuni and C. coli [13, 15, 16]. The combined use of selective and non-selective media with a filtration technique has been shown to improve isolation rates [9, 17]. Further application of this method, with some modifications to the combinations of the culture type and PCR protocol, may enable the rapid and sensitive detection of atypical Campylobacter spp. in various samples; this is currently being studied.

References


