BACTERIAL PATHOGENICITY

Enhanced production of vascular endothelial growth factor by human monocytic cells stimulated with endotoxin through transcription factor SP-1

TETSUYA SAKUTA, KENJI MATSUSHITA, NOBORU YAMAGUCHI*, TOHRU OYAMA, RIE MOTANI, TOSHIHIKO KOGA*, SHIGETAKA NAGAOKA, KAZUHIRO ABEYAMA†, IKURO MARUYAMA‡, HARUHIKO TAKADA‡ and MITSUO TORII

Department of Operative Dentistry and Endodontology, Kagoshima University Dental School, Kagoshima 890-8544, *Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, †Department of Clinical Laboratory Medicine, Kagoshima University Medical School, Kagoshima 890-8520 and ‡Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai 980-8776, Japan

The effect of endotoxin on the regulation of vascular endothelial growth factor (VEGF) mRNA expression in human monocytic (THP-1) cells was examined. Endotoxic lipopolysaccharide (LPS) from Escherichia coli and synthetic E. coli-type lipid A (LA-15-PP) enhanced VEGF mRNA expression. LPS-induced VEGF mRNA accumulation was regulated, at least in part, at the transcriptional level. Enhancement of VEGF gene expression by LPS was shown by gel shift analysis and use of transcription factor inhibitors to be mediated via the activation of SP-1.

Introduction

Monocytes are major contributors to the regulation of wound repair and immune responses. Stimulation of monocytes with endotoxin (lipopolysaccharide, LPS) leads to a rapid and transient expression of genes encoding proteins with immunomodulatory activities [1]. Vascular endothelial growth factor (VEGF) is an angiogenic factor that induces endothelial cell proliferation and angiogenesis which enhances vascular permeability [2]. VEGF is induced by hypoxia [3] or several cytokines [4–6] in various normal and transformed cells. Recently, LPS was shown to induce VEGF production in murine peritoneal macrophages [7] and peripheral blood mononuclear cells isolated from patients with rheumatoid arthritis [8]. Furthermore, it was also found that VEGF was chemotactic for monocytes [9]. Therefore, VEGF may be involved in the immune response at infected sites. However, little is known about the regulation of molecular mechanisms governing VEGF gene expression by LPS. The present study examined whether synthetic lipid A enhanced VEGF mRNA expression and whether activation of SP-1 was involved in the enhanced expression of VEGF in human monocytic cells in response to LPS.

Materials and methods

Cell culture

Human monocytic THP-1 cells were obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA). The cells were maintained in RPMI 1640 (Gibco Laboratories, Grand Island, NY, USA) supplemented with fetal bovine serum (FBS; Gibco) 10% and kanamycin 200 μg/ml in a humidified atmosphere of air with CO2 5% at 37°C. The cells were treated with 100 nM 1α,25-dihydroxyvitamin D3 at a density of 2 x 10⁶ cells/ml at 37°C, and then were stimulated with test materials in the following experiments.

Specimens and probes

LPS from Escherichia coli O55:B5, cycloheximide, actinomycin D and mithramycin A were purchased from Sigma (Sigma Chemical Co., St. Louis, MO, USA). Curcumin was purchased from Nakarai Tesque (Kyoto, Japan). Synthetic Escherichia coli-type lipid A (LA-15-PP) [10] and murine monoclonal anti-CD14 antibody (MAb MY4) were obtained from Daiichi Pure Chemical Co. (Tokyo, Japan) and Coulter (Hialeah, FL,
USA), respectively. Plasmids containing human VEGF cDNA sequence [11] were provided by Dr M. Shibuya (Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo). A human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA clone [12] was provided by Dr S. Sakiyama (Chiba Cancer Center Research Institute and Hospital, Chiba, Japan).

Northern blot analysis

Total RNA extraction and Northern blot analysis were performed as described previously [13]. Filters were then exposed to the imaging plate for analysis with a Bio-Imaging Analyzer (BAS 1000 Mac; Fuji Photo Film, Tokyo). Data were normalised by expressing the ratio of VEGF mRNA to GARDH mRNA.

Gel shift assay

Nuclear extracts were prepared according to Chomczynski and Sacchi [14]. Gel shift assays were performed as described by Jimi et al. [15]. DNA binding was assayed with consensus AP-1 elements, TTGATGACTCA and consensus SP-1 elements, GATCGGGGGG.

Measurement of VEGF protein

The concentrations of VEGF_{165} protein in the culture supernates were measured by ELISA at the Tukuba Research Laboratories of Toagosei Co. (Ibaraki, Japan).

Results

Effect of LPS and synthetic lipid A on VEGF mRNA expression in THP-1 cells

The effect of LPS from *E. coli* on the expression of VEGF mRNA by THP-1 cells was examined. VEGF mRNA expression began to increase after exposure for 30 min, reached a maximum level within 4 h, then decreased to a normal level within 8 h (Fig. 1). In accordance with the gene expression, VEGF secretion from the cells was significantly enhanced from 8 to 48 h (Fig. 1). In human peripheral blood mononuclear cells, VEGF production in the cultures incubated with LPS, as determined by the ELISA, was about two-fold higher than in those without LPS (data not shown). To elucidate the active entity of LPS, THP-1 cells were incubated with LA-15-PP, which also enhanced VEGF mRNA expression by THP-1 (Fig. 2). Enhanced

- **Fig. 1.** Time course of VEGF mRNA induction in THP-1 cells stimulated with *E. coli* LPS 1 μg/ml for the indicated periods. (a) Total RNA was extracted and was hybridised with 32P-labelled VEGF and GAPDH cDNA probes. Two additional experiments showed similar findings. (b) Culture media were collected and the VEGF concentration was determined by ELISA. The data presented are representative of three experiments that gave essentially identical results. Differences from the respective controls (medium alone) were significant at p < 0.05 (*) and p < 0.01 (**) by Student’s *t* test.
expression of VEGF mRNA by THP-1 cells induced by LPS was markedly suppressed in the presence of MAb MY4 (Fig. 3). These findings indicated that LPS enhanced VEGF mRNA expression by THP-1 cells through a CD14-dependent pathway.

Enhanced VEGF mRNA expression and SP-1 activation

To further investigate the mechanisms of enhanced VEGF mRNA expression induced by LPS, cycloheximide or actinomycin D was added to the THP-1 cultures. LPS-induced VEGF mRNA expression was not suppressed by cycloheximide, but was inhibited by actinomycin D (Fig. 4). This finding showed that part of the enhanced expression of VEGF mRNA was induced by LPS directly and might be mediated at the transcriptional level, while there is a possibility that VEGF mRNA accumulation was due to the increase of mRNA stability and was modulated via production of factor(s) stimulated by LPS.

To examine the possible transcriptional regulation of LPS-induced VEGF mRNA expression, gel shift assays were performed. LPS-induced AP-1 activation began to increase slightly after exposure for 30 min, reached the maximum level after 4 h and was maintained until 12 h (Fig. 5a). In contrast, LPS-induced SP-1 activation began to increase after 15 min and reached the maximum level within 30 min (Fig. 5b), which was faster than LPS-induced VEGF mRNA expression. These DNA bindings were specific, because excess amounts of the unlabelled wild-type oligonucleotide, but not the mutated oligonucleotide, competitively inhibited these activities (data not shown).

To determine how transcription factors regulate the LPS-induced VEGF mRNA expression, THP-1 cells were incubated with LPS in the presence or absence of curcumin and mithramycin A, inhibitors of AP-1 activation [16] and SP-1 activation [6], respectively. Mithramycin A suppressed LPS-induced VEGF mRNA expression, whereas curcumin did not alter the expression of VEGF mRNA (Fig. 6), indicating involvement of SP-1 in LPS-induced VEGF mRNA expression by THP-1 cells.

Discussion

VEGF has been shown to be a key mediator of neovascularisation associated with tumours and intra-

Fig. 3. Effect of anti-CD14 antibody on LPS-induced VEGF mRNA expression by THP-1 cells incubated for 4 h with or without E. coli LPS 1 µg/ml or MAb MY4 2.5 µg/ml or both. Other details are as given in the footnote to Fig. 1. Similar findings were obtained in two other experiments.
ocular disorders [2]. Furthermore, Brown et al. [17] reported that VEGF mRNA was overexpressed in the epidermis of healing skin wounds. VEGF is induced by hypoxia [3], tumour necrosis factor-α (TNF-α) [5, 6], interleukin-6 [4] or platelet-derived growth factor [18] in various normal and transformed cell types. Xiong et al. [7] reported that co-stimulation with LPS and interferon-γ induced VEGF production and mRNA expression in murine peritoneal macrophages, but a recent study showed that VEGF production was enhanced by LPS alone [19]. Similar findings have been reported with peripheral blood mononuclear cells from patients with rheumatoid arthritis [8] and rheumatoid synovial cells [20]. In accordance with other endotoxic activities, induction of VEGF gene expression in human monocytc cells by LPS was reproduced by the lipid A portion (Fig. 2) and proceeded through a CD14-dependent pathway (Fig. 3). In the VEGF promoter region, several binding sites for the transcription factors SP-1, AP-1 and AP-2 were suggested [21]. The enhanced expression of the VEGF gene induced by basic fibroblast growth factor (bFGF) and TNF-α was mediated through transcription factor SP-1 in human glioma cells [6].

Recently, enhanced production of VEGF in human pulp cells was shown to be mediated, in part, through AP-1 activation [19]. However, the present study provides the first evidence that enhanced expression of the VEGF gene induced by LPS is mediated via the activation of SP-1 in human monocytc cells (Figs. 5 and 6). These different findings regarding the activation of the transcription factor in response to LPS may depend on the target cells. In inflammatory tissues, host cells release various cytokines in response to invading bacteria and their components and products. It has been shown that monocyte chemotaxis in response to VEGF was mediated by fli-1, which is one of the VEGF receptors and, furthermore, that exposure of human monocytes to LPS led to a significant upregulation of the fl-1 mRNA level [9]. In our studies, VEGF showed chemotaxis for human peripheral mononuclear cells (unpublished observation). Therefore, it appears that, at infected sites, monocyte/macrophage-derived VEGF produced in response to LPS might stimulate surrounding monocytes to migrate into the infected region, resulting in wound healing and induction of inflammatory angiogenesis.

Fig. 4. Effects of cycloheximide and actinomycin D on LPS-induced VEGF mRNA expression by THP-1 cells incubated for 4 h with or without E. coli LPS 1 μg/ml, cycloheximide 10 μg/ml or actinomycin D 10 μg/ml. Other details are as given in the footnote to Fig. 1. Similar findings were obtained in two other experiments.

Fig. 5. Effects of LPS on nuclear binding to AP-1 and SP-1 consensus fragments. THP-1 cells were stimulated with E. coli LPS 1 μg/ml for the indicated periods. The nuclear extracts were prepared and gel shift assay was performed as described in the text. Two other experiments showed similar findings.
Fig. 6. Effects of mithramycin A and curcumin on LPS-induced VEGF mRNA expression by THP-1 cells incubated for 4 h with or without E. coli LPS 1 μg/ml, 10 nM mithramycin A, or 5 μM curcumin. Other details are as given in the footnote to Fig. 1. Similar findings were obtained in two other experiments.

We thank D. Mrozek (Medical English Service, Kyoto, Japan) for reviewing this paper. This work was supported in part by grants from the Grants-in-Aid for Scientific Research (09771639) from the Ministry of Education, Science, Sports, and Culture of Japan.

References