DIAGNOSTIC MICROBIOLOGY

Detection of \textit{Chlamydia trachomatis}-specific antibodies in human sera by recombinant major outer-membrane protein polyantigens

PER MYGIN, GUNNA CHRISTIASEN, KENNETH PERSSON* and SVEND BIRKELUND

Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus, Denmark and *Department of Virology, University Hospital, Malmö, Sweden

This study was performed to generate and evaluate recombinant antigens for use in a species-specific \textit{Chlamydia trachomatis} immunoassay. In a molecular genetic approach, fragments of the \textit{C. trachomatis} major outer-membrane protein (MOMP) were produced as fusion proteins to create three different constructs encompassing the variable domains I, II and IV of selected \textit{C. trachomatis} serovars. The recombinant MOMP polyantigens were affinity-purified and used in an enzyme-linked immunosorbent assay. Antibody detection was evaluated with 103 patient sera and the results were compared with titres obtained in the micro-immunofluorescence test. The results showed that the generated MOMP polyantigens detected the presence of \textit{C. trachomatis}-specific human antibodies with little cross-reaction to \textit{C. pneumoniae}-specific antibodies. When compared to the micro-immunofluorescence assay the MOMP polyantigen detected the presence of anti-\textit{C. trachomatis} IgG antibodies with a sensitivity of 80\% and a specificity of 91\%.

Introduction

The corynbacillary genus \textit{Chlamydia} comprises a group of obligately intracellular pathogens that proliferate through a unique biphasic developmental cycle. The organisms alternate between an infective (elementary body, EB) and a replicating form (reticulate body, RB). The genus consists of four species – \textit{C. trachomatis}, \textit{C. pneumoniae}, \textit{C. pecorum} and \textit{C. psittaci}. \textit{C. trachomatis} and \textit{C. pneumoniae} cause a wide variety of infections in man, whereas \textit{C. psittaci} and \textit{C. pecorum} are animal pathogens of particular interest in veterinary medicine. Occasionally, \textit{C. psittaci} causes severe infections of the respiratory tract in man known as psittacosis or ornithosis.

\textit{C. trachomatis} is divided into serovars, all of which are human pathogens except the mouse pneumonitis serovar (MoPn). The trachoma biowars (serovars A–C) cause conjunctivitis, leading to trachoma, the primary cause of preventable blindness in third world countries. Serovars D–K are all pathogens of the urogenital tract. They are the most common cause of sexually transmitted genital infections, eliciting local acute epithelial infections, which can lead to pelvic inflammatory disease. Chronic infections by \textit{C. trachomatis} serovars D–K occasionally cause tubal obstruction or ectopic pregnancy. The serovars L1–L3 of \textit{C. trachomatis} infect both macrophages and epithelial cells and are spread systemically through the lymphatic tissue, causing the invasive disease known as lymphogranuloma venereum [1].

\textit{C. pneumoniae} causes pneumonia, bronchitis and pharyngitis [2]. Recently, this human pathogen has been associated with chronic disease such as asthma, chronic bronchitis, acute myocardial infarction and coronary artery disease [3–5]. Studies show that anti-\textit{C. pneumoniae} antibodies are widespread in the adult population (~50\%) [6].

The aim of this study was to develop a serological assay able to measure specific antibodies to \textit{C. trachomatis} genital serovars with little cross-reaction to \textit{C. pneumoniae}-specific antibodies. In cases of upper genital tract infection, it is important to use serology tests that can distinguish antibodies to \textit{C. trachomatis} from those associated with non-genital chlamydial. This is the main problem of Chlamydia serology today. A large retrospective study showed that antibodies to \textit{C. pneumoniae} account for up to half of all chlamydia IgG-positive patients attending genitourinary medicine clinics [7]. Similar results were obtained when
analysing sera from anti-chlamydia IgG-positive rheumatological patients [8]. The main reason for this is the low specificity of commonly used chlamydial serology tests.

The chlamydial micro-immunofluorescence test (MIF) is the only differential serodiagnostic tool generally applied [9]. This test is based on the measurement of antibodies to surface-exposed membrane components of purified Chlamydia serovars. The outer membrane of Chlamydia spp. consists primarily of the major outer-membrane protein (MOMP), outer-membrane protein 2 (Omp2), outer-membrane protein 3 (Omp3) and a loosely associated genus-specific lipopolysaccharide (LPS). MOMP, Omp2 and LPS have been identified as the major immunodominant chlamydial antigens [10, 11].

The only commercially available recombinant chlamydial serology test is based upon LPS (Medac, Germany). LPS is highly immunogenic in human chlamydial infections as it contains a surface-exposed epitope. The epitope is genus-specific and is, therefore, not suitable as an antigen in chlamydial species-specific serology [12, 13].

Omp2 is a general target of the immune system in both C. trachomatis and C. pneumoniae infections [10, 11, 14]. An analysis of the humoral immune response towards recombinant Omp2 has nevertheless failed to detect any species-specific epitopes [15]. No surface exposure of the protein has been detected [16–18].

MOMP is a primary target of serovar-specific antibodies [19]. It is considered to be a porin, spanning the outer membrane of all Chlamydia species. Infections with C. trachomatis induce a strong humoral response mainly directed against three variable, surface-exposed segments of this protein (VS-I, VS-II and VS-IV) [20, 21]. These regions are also the basis of the C. trachomatis serovar typing. C. pneumoniae MOMP does not seem to be surface exposed and it is less immunogenic in infections caused by this pathogen [22, 23]. Therefore, MOMP is an obvious candidate in a C. trachomatis-specific serological assay. Unfortunately, MOMP harbours non-resolved immunoglobulin-binding properties, making the mature protein less suitable for chlamydial serology [11].

The present study selected and purified C. trachomatis-specific immunodominant regions of MOMP as recombinant polyantigens (VS-I, VS-II and VS-IV). Fusion proteins that were generated were applied in a C. trachomatis-specific serological assay. The study analysed the presence of IgG antibodies against these MOMP polyantigens in a wide panel of human sera with different serological evidence of C. trachomatis, C. pneumoniae or no chlamydial infection. Results obtained by enzyme-linked immunosorbent assay (ELISA) were compared to the ‘gold’ standard of chlamydial serology, the MIF test [9]. Preliminary results of this study were presented at the Ninth International Symposium on Human Chlamydial Infections [24].

Materials and methods

Chlamydial strains

C. trachomatis serovar E was obtained from the American Type Culture Collection (ATCC). Strains used in the MIF protocol have been described previously [25].

Serum samples

Serum samples were collected from gento-muirinary clinic patients, patients with suspected ornithosis and from apparently healthy, asymptomatic donors.

MIF

The protocol used to obtain MIF results has been described previously [25]. C. pneumoniae 1OL-207, C. psittaci 6BC and C. trachomatis serovars D–K were included in the assay. End-point titrations of reactive sera were performed and geometric mean titres were calculated for positive sera. Titres >16 were considered positive by the assay.

Characterisation of human sera by MIF

Sera were sorted into four groups, according to serum reactivity as measured by MIF with fixed whole cells of C. trachomatis and C. pneumoniae. Sera of group I (positive for both C. pneumoniae and C. trachomatis by MIF) were selected from women who were culture-positive for C. trachomatis (19 sera). Group II consisted of sera from normal healthy women who had been screened by MIF for anti-chlamydial antibodies and found to be positive for C. trachomatis only (20 sera). Sera from patients examined for C. pneumoniae infection or ornithosis where only anti-C. pneumoniae antibodies had been found constituted group III (19 sera). This group also included 11 sera from apparently healthy donors (asymptomatic patients). Sera without anti-chlamydial antibodies (MIF) at routine screening constituted the fourth group (34 sera).

Cloning of momp gene fragments into expression vector pET9d-6His

Gene fragments encoding a 6-mer histidine tag and selected regions of C. trachomatis momp genes were introduced into the expression vector pET9d [26, 27]. Four pairs of oligonucleotides (Table 1) were used in the cloning strategy, which is outlined in Fig. 1. The oligonucleotides were synthesised by DNA Technology, Denmark.
A gene fragment encoding a 6-mer histidine tag used in subsequent purification of fusion proteins was initially introduced into the BamHI restriction endonuclease cleavage site of plasmid pET9d (Fig. 1, step 1). The oligonucleotide set H is made up of complimentary strands, creating an upstream BamHI sequence overhang and a downstream identical BglII sequence overhang (Table 1). The pET9d vector was digested with BamHI and re-ligated by using the T4 DNA-ligase in the presence of equimolar amounts of oligonucleotide set H [26]. Selected plasmids were DNA sequenced to ensure the correct orientations and nucleotide content of the introduced fragment. This was done bidirectionally with plasmid-specific primers, the ABI Prism dye terminator cycle sequencing ready reaction kit and an ABI Prism 377 DNA sequencer as described by the manufacturer (Perkin-Elmer, CT, USA). Upon ligation of oligonucleotide set H into pET9d, only one BamHI restriction endonuclease site is maintained (upstream of the encoded histidine tag).

By using the NcoI restriction endonuclease site of the pET9d vector located further upstream of the introduced histidine-encoding gene fragment and the generated BamHI restriction endonuclease site, it was possible to include a specific momp sequence upstream of the histidine-encoded fragment maintaining the correct reading frame. C. trachomatis serovar E is the most widespread genital strain, causing c. 38–52% of C. trachomatis urogenital infections [28–30]. PCR with C. trachomatis serovar E genomic DNA and primer set I was used to amplify the momp gene fragment encoding C. trachomatis serovar E MOMP66-aa116 (Fig. 2, Table 1). The PCR protocol used included 30 amplification cycles (30 s at 94°C, 30 s at 50°C and 30 s at 72°C) (Boehringer Mannheim GmbH). The PCR product was ligated into pCR™-II vector and recombinants were transformed into E. coli INVaF™ as described (Invitrogen, USA). After plasmid isolation and DNA sequencing, the amplified DNA fragment was moved into the histidine-encoding plasmid by digestion of both the recombinant pCR™-II vector and the histidine-encoding pET9d with NcoI/BamHI restriction endonucleases and subsequent re-ligation with T4 DNA-ligase (Boehringer Mannheim GmbH) (Fig. 1, step 2) [26]. By transformation of recombinant plasmid in E. coli XL-1 blue and selecting for kanamycin resistance (present in the pET9d vector), clones harbouring the plasmid encoding antigen 1 were obtained (Fig. 2). In addition to the upstream NcoI site and a downstream BamHI site, an ApaI restriction endonuclease site was introduced downstream of the momp encoding sequence, to facilitate subsequent cloning of the fusion construct (Table 1, Fig. 1).

Epidemiological studies have shown that C. trachomatis serovars D, E, F and G are responsible for 83–86% of all C. trachomatis genital infections [28–30].
allow detection of antibodies against heterologous C. trachomatis serovars, a gene fragment encoding the MOMP VS-I regions of serovars F/G (identical regions, 15 ALAGASQNTSTLSKLV 104) and serovar D (15 AKPTTDTGNSAAPSTLT 102) was introduced (Fig. 2). Jones et al. have reported that this region is recognised by antibodies in sera from trachoma patients [21]. This was done by synthetically producing a set of oligonucleotides encoding both ompA fragments (Table 1, oligonucleotide set 2). These complementary oligonucleotides were synthesised to include an upstream ApaI and a downstream BamHI sequence overhang. This fragment was introduced into the fusion protein construct encoding antigen 1, by ApaI/BamHI digestion of the plasmid and re-ligation in the presence of the oligonucleotide set 2 (Table 1, Fig. 1, step 3). Correct cloning was ensured by DNA sequencing of resulting recombinant plasmids.

MOMP VS-IV is recognised by neutralising murine monoclonal antibodies (Mabs) [20]. Therefore, a gene fragment encoding C. trachomatis MOMPp17-3024 was included in the final fusion protein construct (Fig. 2). This region is conserved in all genital serovars of C. trachomatis except for serovar K and is very different from the homologous regions of both C. pneumoniae and C. psittaci MOMP (Fig. 2). The variable segment IV of C. psittaci MOMP has been successfully applied in the serological detection of abortigenic C. psittaci infection in ruminants [31]. The coding region was generated by oligonucleotide set 3 and as in the initial cloning of the histidine fragment, upstream BamHI and downstream BglII restriction endonuclease sequence overhangs were introduced (Table 1). The plasmid construct encoding antigen 2 was digested with BamHI and re-ligated in the presence of oligonucleotide set 3 (Fig. 1, step 4). Sequencing of the resulting construct demonstrated that this final plasmid contained the sequence encoding antigen 3 (Fig. 2).

Production and purification of fusion proteins

To express and purify plasmid-encoded fusion proteins, the recombinant pET9d vectors were electrotansformed into E. coli BL21-DE3. Cultures were grown in the presence of kanamycin (30 μg/ml). During log-phase growth, the bacterial production of pET9d-encoded fusion proteins was induced with isopropyl β-D-thiogalactoside (IPTG, 0.4 mM) [27]. The C-terminal-encoded histidine tag included in all fusion proteins made it possible to purify the recombinant proteins [32] by affinity chromatography under denaturing conditions with a Ni²⁺-NTA resin and a pH gradient (Quigen, CA, USA) [15]. The eluates were neutralised with a 1 in 10 volume of 1 M Tris-HCl buffer (pH 8) and analysed by SDS-PAGE and Coomassie Blue staining [15].

ELISA

Antigenicity of purified fusion proteins was measured by ELISA with the selected panel of sera. Polysorb microtiter plates (Nunc, Denmark) were coated for 2 h with 50 μl (5 μg/ml) of recombinant protein in 50 mM carbonate buffer (pH 9.6). Excess binding capacity was blocked by adding 200 μl of fetal calf

Fig. 1. Illustration of the cloning strategy applied to create the plasmid constructs encoding antigens 1–3 used in this study. Step 1: digestion of plasmid pET9d with BamHI and re-ligation with phosphorylated, complementary oligonucleotide set H. Step 2: NcoI/BamHI digestion of plasmid pET9d and re-ligation with PCR fragment amplified by primer set 1. Step 3: digestion with ApaI/BamHI and re-ligation with phosphorylated oligonucleotide set 2. Step 4: BamHI digestion and re-ligation with phosphorylated, complementary oligonucleotide set 3. See Materials and methods for details. Colours used in this illustration are as given for Fig. 2.
C. TRACHOMATIS-SPECIFIC RECOMBINANT ELISA

Fig. 2. (a) Multiple alignment of chlamydial MOMP amino acid sequences. Only regions of the protein used in this study are illustrated (variable segments I, II and IV). (B) The compositions of the generated fusion proteins (antigen 1–3) are shown. The colour coding refers to the multiple alignment above. Light grey depicts the protein fragment of C. trachomatis (E) VS-I-II (aa66–aa216). Dark grey depicts C. trachomatis D, F/G VS-I (aa86–aa102/104). Areas depicted in black show the C. trachomatis-specific VS-IV fragment (aa317–aa324). Amino-acid fragments generated by restriction endonuclease sites used in the cloning strategy are depicted by single letter code between fusion partners.

serum 20% in phosphate-buffered saline (pH 7.4) including Tween-20 0.05% (PBS-T) (Sigma). Sera were diluted 1 in 100 in the blocking agent to absorb any cross-reacting antibodies directed against fetal calf serum. Antigen-coated microtiter plates and sera dilutions were stored overnight at 4°C. Diluted sera were added to the plates and incubated for 2 h. Bound antibody was detected by incubation for 1 h with peroxidase-labelled goat anti-human IgG (BioRad, CA, USA) diluted 1 in 3000 in PBS-T. Tetramethylbenzidine was the chromogen used in this assay, as described by the manufacturer (Sigma). Incubation was at room temperature and all intermediate steps in the assay were followed by washing the microtiter wells four times in PBS-T. Colour development was terminated 20 min after by addition of an equal amount of 1 m HCl. Optical density at 450 nm (OD450) was measured on a Bio-Kinetics Reader with the KC3 software program (Bio-Tek Instruments, Winooksi, VT, USA). The results are average values of two independent measurements, with SDs of <10%. In all data presented in this paper, the background OD400 value measured for each serum upon binding to plates without antigen was subtracted from the OD450 measured when antigen was used in the ELISA. This background was in the order of OD400 0.0–0.3. The OD450 cut-off values for each antigen, chosen empirically so as to obtain the highest possible sensitivity and specificity of the ELISA compared to MIF, were 1.5 (antigen 1), 0.8 (antigen 2) and 0.8 (antigen 3).
DNA sequences

Chlamydia momp sequences were obtained from the EMBL/GenBank/DDBI database (accession nos. M58938, M17342, M17343, X52557, X52080, X16007, M36533, M14738, X55700) and from the paper by Yuan et al. [33].

Results

Production of purified recombinant antigens 1–3

Three recombinant plasmids encoding MOMP polyanitgens were generated by a combined cloning strategy. Antigen 1 contained the variable segment I–II of C. trachomatis serovar E (MOMP_{56–aa216}) (Fig. 2). The gene fragment encoding VS-I of serovar F/G and serovar D was introduced in antigen 2 (Fig. 2). The final construct (antigen 3) included the gene fragment encoding the species-specific region of C. trachomatis MOMP VS-IV (Fig. 2). The intervening sequences encoded by nucleotides of restriction enzyme palindromes between fusion partners are depicted in Fig. 2. All three antigens were purified by nickel-affinity chromatography and analysed by SDS-PAGE (not shown). The antigen preparations were found to be >95% pure, as judged by a Coomassie Blue-stained polyacrylamide gel.

Reactivity of sera with recombinant antigens 1–3

To evaluate the efficacy of the purified MOMP polyanitgens in detecting species-specific C. trachomatis antibodies, a panel of 103 human sera was tested in duplicate by ELISA. The sera were sorted into 4 groups according to the presence or absence of C. trachomatis or C. pneumoniae antibodies, or both, in the samples as measured by MIF. First, the antigen containing C. trachomatis serovar E MOMP (VS I-II) was used in the ELISA (antigen 1, Fig. 2). It was found that >56% (22 of 39) of C. trachomatis MIF-positive sera were positive by ELISA (serum groups I and II, Fig. 3). In contrast, 80% (51 of 64) of MIF-negative sera were negative in the ELISA assay (serum groups III and IV, Fig. 3). The species specificity of this antigen is evident, because there was no increase in the positive rate of samples reported positive by C. pneumoniae MIF (serum groups I and III) as compared to serum groups II and IV (negative by C. pneumoniae MIF) (Fig. 3).

To increase the sensitivity and specificity of the assay, antigen 2 containing, additionally, VS-I from C. trachomatis serovars D and F/G was tested (Fig. 2). When this recombinant MOMP polyanitgen was used in ELISA, 12 of 19 sera (63%) that were positive by C. trachomatis MIF and culture isolation were positively identified (group I, Fig. 3). In group II (not confirmed

<table>
<thead>
<tr>
<th>MIF</th>
<th>Antigen 1</th>
<th>Antigen 2</th>
<th>Antigen 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>53%</td>
<td>63%</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td>(19 sera)</td>
<td>(20 sera)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>60%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>(20 sera)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>20%</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>(30 sera)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>(34 sera)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. ELISA results obtained with recombinant MOMP polyanitgens 1, 2 and 3. The results are compared with MIF. The percentages of sera positive by ELISA are shown in black, whereas the white colouring shows the percentage considered negative by ELISA. The cut-off OD₄₅₀ values were 1.5, 0.8 and 0.8 respectively.
by culture isolation, but *C. trachomatis* positive and *C. pneumoniae* negative by MIF), this antigen gave positive results with 12 of 20 (60%) of the sera (Fig. 3). In the group of *C. trachomatis*/*C. pneumoniae* MIF-negative sera (serum group IV, Fig. 3) there was a decrease in the false-positive detection of sera. In all, antigen 2 was superior to antigen 1 in the detection of *C. trachomatis*-specific antibodies, as both sensitivity and specificity were enhanced.

Finally, to generalise the species-specificity of the assay, antigen 3 was tested (Fig. 2). By including the species-specific MOMP fragment VS-IV in the polyantigen, the ELISA detection of the *C. trachomatis* MIF-positive sera was clearly increased (groups I and II, Fig. 3).

Comparison of results obtained by MIF and ELISA with antigen 3

The qualitative correlation between results obtained by ELISA with antigen 3 and the results of *C. trachomatis* MIF was analysed. The sensitivity of this antigen was close to 80%, as 31 of 39 *C. trachomatis* MIF positive sera were positively identified in this third assay. The specificity of this assay was 91%, as 58 of 64 sera were negative by both *C. trachomatis* MIF and the ELISA with antigen 3. The quantitative ELISA results with antigen 3 were correlated with *C. trachomatis* MIF titres of all sera, and the results are presented in Fig. 4. There was no statistical correlation between MIF titres and antibodies measured in this assay (p > 0.05), but a trend was evident (Fig. 4). Sera with higher MIF titres gave higher OD450 values in the ELISA.

Discussion

Serology has provided important information regarding the wide range of disease associated with *C. trachomatis* infection, including infant pneumonia, acute reactive arthritis and chronic genital infections. Whole-cell chlamydia organisms and particularly the MIF assay have generally been applied in the species-

Fig. 4. The quantitative relationship between titres obtained with *C. trachomatis* antigen in MIF and ELISA readings with recombinant antigen 3. Sera were diluted 1 in 100 in the ELISA measurements. Each circle represents one serum. The mean OD450 values of sera with identical MIF titres are indicated by a solid line, whereas the cut-off point of the ELISA is marked by a dotted line.
specific serological detection of chlamydial infections [9]. However, the MIF test is difficult to standardise, and is technically demanding. As a result, the use of this assay has been restricted to a relatively small number of qualified research laboratories [34]. The results presented in this paper suggest that a more widely applicable enzyme immunoassay, based upon recombinant MOMP polyanthigens, may be helpful in the serodiagnosis of C. trachomatis infections. A similar approach has been applied successfully in serological detection of cytomegalovirus-specific antibodies in human sera [35].

To evaluate the ELISA with MOMP polyanthigens (Fig. 2), 103 sera from different patient groups were selected and grouped according to MIF results (Fig. 3). Almost 80% (79.5%) of C. trachomatis MIF-positive sera (31 of 39), were identified in the assay with the third MOMP polyanthigen (antigen 3, Fig. 3), and <10% of C. trachomatis MIF-negative sera (6 of 64) were identified as positive with this antigen. The divergent results need to be investigated. However, the detection of a few C. trachomatis MIF-negative sera as positive by ELISA is not due to the presence of cross-reacting C. pneumoniae antibodies. The detection of positive sera by the ELISA was similar in group III (C. pneumoniae-positive by MIF) and group IV (C. pneumoniae-negative by MIF) sera (Fig. 3).

The inclusion of additional C. trachomatis-specific epitopes in the antigen 1 construct (antigen 2 and antigen 3) clearly increased both sensitivity of specificity of the ELISA assay (Figs 2 and 3). Indeed, the OD mean value of C. trachomatis MIF-negative sera is low with antigen 3 (OD = 0.43, Fig. 4). A closer look at the three sera of group I not detected by antigen 3 revealed that two had low C. trachomatis MIF titres (16 and 64) with high MIF titres against C. pneumoniae (both 512) (data not shown). Thus, a certain amount of anti-C. pneumoniae cross-reacting antibodies in the C. trachomatis MIF cannot be ruled out because of the presence of the genus-specific LPS epitope in the assay.

When the anti-C. trachomatis IgG antibody levels obtained by ELISA were correlated with the results of the MIF, no strong quantitative correlation was found. This indicates that different antibodies are measured in the two assays. Whereas this ELISA is based upon linear MOMP epitopes, the chlamydial MIF includes detection of conformational MOMP epitopes and epitopes on other Chlamydia species or C. trachomatis serovar specific antigens, or both. The specific antigens involved in the C. pneumoniae MIF assay have not been identified.

Even though MIF has been considered the ‘gold’ standard in chlamydial serology for many years, a recent investigation has shown that the inter-laboratory variation of MIF results is of the order 10–40% [34]. Therefore, a discrepancy when comparing other tests to the MIF assay is inevitable.

This paper describes the first evaluation of the use of recombinant antigens in the differential serodiagnosis of C. trachomatis urogenital infections. The results indicate that recombinant MOMP polyanthigens could become a valuable tool in the development of a standardised serological assay for the detection of C. trachomatis infections. However, no correlation of ELISA results and disease stages was attempted. This is clearly an important issue, especially in respect to chronic chlamydial infections. To perform such a study, larger, clinically well characterised patient groups need to be tested. Serology may prove to be of importance in the diagnosis of subclinical and persistent C. trachomatis infections. The test described in this paper offers practical advantages over MIF including simplicity, low cost and objectivity. However, improvements in the sensitivity and specificity of such a serological test are imperative. Further investigation including detection of serum IgA and IgM is warranted. Perhaps the use of carefully selected peptides in an enzyme immunoassay may prove to be more sensitive in the serodiagnosis of human C. trachomatis infections.

This work was supported by EU Grant ERBCHRXCT920400 from the Human Capital and Mobility Program, the Danish Health Research Council (20-3503-1), the Danish Veterinary and Agricultural Research Council (12-1620-1), the Danish Pasture Association, the University of Aarhus Research Foundation, ‘Fonden til Lægevidenskabskabens Fremme’ and ‘Nationaleforeningen til Bekæmpelse af Lungevejksumme’. We are grateful to Karin Skovgaard Soeensen, Lisbet Wellejus Pedersen and Inger Andersen for excellent technical assistance.

References
9. Wang SP, Grayston JT. Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organ-

