TECHNICAL NOTE

The value of LYM-1 cells for examining vacuole formation and loss of cell viability induced by culture supernates of Helicobacter pylori

Departments of Gastroenterology and Medical Zoology, Jichi Medical School and Utsunomiya East Hospital, Japan

Some strains of Helicobacter pylori are known to produce an extracellular cytotoxin that causes vacuolation in cultured mammalian cells. Screening for such strains makes use of HeLa cells which may not be sensitive enough to detect minimal changes. The aim of this study was to develop a more sensitive cell line. Vacuole formation was examined in HeLa cells, as well as four other cell lines established in this laboratory by ammonium chloride induction. Among five cell lines tested, LYM-1 cells were most sensitive for the detection of intracellular vacuolation with this agent. Loss of cell viability of LYM-1 and HeLa cells induced by H. pylori culture supernates was also examined: LYM-1 were more sensitive than HeLa cells. Cell death was not always accompanied by vacuole formation. This suggests that the mechanism whereby cell death occurs must be different from that for vacuole formation. LYM-1 cells may be useful when measuring vacuole formation and cell death of the cultured cells induced by culture supernates of clinical isolates of H. pylori.

Introduction

Some strains of Helicobacter pylori are known to produce an extracellular cytotoxin that causes vacuolation in various mammalian cells [1, 2]. Recently, a protein isolated from H. pylori culture supernates has been shown to cause vacuolation in vivo [3]. This activity of H. pylori may play a major role in the development of gastritis and peptic ulcer disease [4]. The gene encoding this protein (vacA) [2, 3, 5] and the cytotoxin-associated protein (cagA) [6, 7] have been cloned and sequenced, although the involvement of cagA in vacuolation is still under discussion [8, 9]. Vacuole formation induced by H. pylori supernates is activated via an autophagic mechanism [10, 11]. HeLa cells are often used for examining vacuolating cytotoxin activity, but may not be sensitive enough to detect minimal changes.

In this study, a more sensitive cell line was developed to examine the vacuolating cytotoxin activity of H. pylori, and quantify cell death of the cultured cells induced by clinical isolates of H. pylori.

Materials and methods

Cells

The following cell lines were used: HeLa (derived from human cervical carcinoma), HuL-1 (derived from normal fetal human liver), M (derived from normal rat liver), MK (derived from cynomolgus monkey kidney) and LYM-1 (derived from rat lymph nodes).

Measurement of vacuole formation and cell death of cultured cells

For cell culture, 24-well microtitration plates were used. The cells were cultured together with various concentrations of ammonium chloride or the H. pylori culture supernates. Cells were incubated for 5 days at 37°C in air with CO2 5%. The cultured cells were then fixed with methanol, Giemsa stained, and were observed histologically.

The extent of cell death was classified into two groups in the screening cell line, with ammonium chloride, (−, 100% alive; +, presence of cell death) and into four groups when examining H. pylori culture supernates (−, 100% alive; +, 25% dead; 2+, 26–49% dead; 3+, > 50% dead).

The severity of vacuole formation was classified into
two groups. (−, no vacuole formation; and +, vacuole formation present).

Tissue culture and reagents

The growth medium was DM-201 supplemented with heat inactivated fetal bovine serum (Gibco, NY, USA) 2%. Ammonium chloride (WAKO, Osaka, Japan) was used to induce vacuole formation. Various solutions of ammonium chloride were prepared after filter sterilisation of a stock solution (50 mg/ml) stored for the various experiments.

H. pylori culture supernates

All *H. pylori* strains were isolated from gastric biopsy samples taken from patients at Jichi Medical School Hospital. *H. pylori* was cultured on Brucella agar (Difco, Detroit, USA) and then transferred to Brucella Broth (Difco) containing heat inactivated horse serum (JRH, Tokyo, Japan) and incubated at 37°C for up to 3 days in a micro-aerobic atmosphere. The *H. pylori* culture supernates were collected by centrifugation and sterilised by filtration (0.22 μm pores). The supernate of a vacA gene-positive strain of *H. pylori* was selected for vacuolation experiments and was used at final concentrations of 1 in 4, 8, 16 and 32. DM-201 medium was used for making dilutions of the supernates.

DNA preparation and PCR detection the vacA gene

After culture in Brucella broth, *H. pylori* cells were collected by centrifugation. The pellet was suspended

Fig. 1. Ammonium chloride-induced vacuole formation in LYM-1 cells. **A**, control; **B**, 3 h after addition of ammonium chloride 500 μg/ml. Bars, 20 μm.
in TE buffer (pH 8.0) and digested with proteinase K (Gibco) and sodium dodecyl sulphate (SDS) 0.5% for 1 h at 37°C. The solution was then treated with NaCl. DNA was purified by phenol, phenol–chloroform extraction and ethanol precipitation, and resuspended in 100 µl of double distilled H2O; 10 µl of DNA samples were used for PCR. The primers for amplification of the vacA gene were synthesised according to the method of Telford et al. [3]. The primers used had the following sequences: 5'–CCGAAGAAGCCAA-TAAAACCACG-3' and 5'–CAAAGTCAAACCG-TAGAGCTGGC-3'. The amplification cycle consisted of an initial denaturation at 94°C for 1 min, primer annealing at 55°C for 2 min and extension at 72°C for 1 min. The final cycle included an extension of the product. Samples were amplified through 20 consecutive cycles with Vent DNA polymerase (New England Biolabs, Inc., MA, USA). Samples (10 µl) of the PCR products were analysed by electrophoresis in agarose 1.4% gels (Funakoshi Co. Ltd., Tokyo, Japan) containing ethidium bromide 1 ml/L.

Results

Sensitivity of the cultured cells for the detection of vacuole formation induced by ammonium chloride

Five-day-old cell cultures were examined microscopically to measure the sensitivity of five cell lines for the detection of vacuole formation by ammonium chloride. Vacuole formation was observed only in LYM-1 cells with NH4Cl 500 µg/ml (Fig. 1).

Vacuole formation induced by H. pylori culture supernates

Vacuole formation induced by H. pylori culture supernates with HeLa cells and LYM-1 cells was compared. When culture supernates of 10 strains of H. pylori shown to be positive for the vacA gene by PCR were tested at a final dilution of 1 in 4, vacuole formation in HeLa cells was induced by 20% of the H. pylori culture supernates. On the other hand, vacuole formation in LYM-1 cells was induced by all 10 supernates. In terms of vacuole formation, each H. pylori culture supernate showed different degrees of activity with these cells. The supernates could be classified into two groups (Table 1) where: (1) vacuole formation was found even at a dilution of 1 in 16; (2) vacuole formation was found only at a concentration of 1 in 4.

<table>
<thead>
<tr>
<th>Isolate No.</th>
<th>Dilution of supernates</th>
<th>Loss of viability*</th>
<th>Vacuole formation†</th>
<th>Loss of viability*</th>
<th>Vacuole formation†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 in 4</td>
<td>-</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1 in 4</td>
<td>2+</td>
<td>-</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>-</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1 in 4</td>
<td>+</td>
<td>-</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>-</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1 in 4</td>
<td>+</td>
<td>+</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1 in 4</td>
<td>+</td>
<td>+</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1 in 4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>1 in 4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>1 in 4</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>1 in 4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>1 in 4</td>
<td>2+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 16</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1 in 32</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>+</td>
</tr>
</tbody>
</table>

* - 100% alive; +, 25% dead; 2+, 26–50% dead; 3+, >50% dead.
† - absence of vacuole formation; +, presence of vacuole formation.

Cell death induced by H. pylori culture supernates

Cell death occurred in each cell line but to a much lesser extent in HeLa cells, and no clear differences were found among the 10 H. pylori culture supernates. On the other hand, the degree of cell death in LYM-1 cells differed among the culture supernates of H. pylori. Regarding cell death of the LYM-1 cells, the supernates could be classified into three groups (Table 1) where: (1) no cell death was found even by the addition of supernate at 1 in 4 dilution; (2) some cell death was found depending on the concentration of the supernates; and (3) extensive cell death was found even at a 1 in 16 dilution.

For two strains (nos. 6 and 7), the results of cell death were discordant with those for vacuole formation (vacuole formation without cell death) (Fig. 2).
Fig. 2. Effect of *H. pylori* culture supernates on cell death and vacuole formation in LYM-1 cells at a final dilution of 1 in 4 of *H. pylori* culture supernates. A, no cell death, vacuole formation present; B, cell death, little vacuole formation. Bars, 20 μm.

Discussion

Toxigenic strains of *H. pylori* cause progressive vacuolation in mammalian cells, such as HeLa cells [1, 2, 13]. It has been speculated that the phenomenon of vacuole formation is associated with the gastric pathologies, such as gastric ulcer and gastritis induced by *H. pylori* infection. *H. pylori* produces ammonia by a potent urease enzyme and thus increases the pH of the surrounding mucus, facilitating colonisation by *H. pylori*. Ammonia produced by the urease of *H. pylori* [14] induces damage to the gastric mucosa. Moreover, vacuolating activity may be potentiated by urease-mediated ammonia production [15].

Leunk *et al.* [13] reported that, *in vitro*, broth culture filtrates of *H. pylori* induced cytopathic effects in seven of nine mammalian cell lines. Of the cells tested, Int 407 and HeLa cells were the most responsive. However, HeLa cells are not sufficiently sensitive to detect minimal differences in vacuole formation amongst different *H. pylori* culture supernates. Therefore, this study tried to identify a more sensitive cell line.

Four cell lines established in our laboratory were tested as well as HeLa cells, and it was found that LYM-1 cells were the most sensitive to damage by ammonium chloride. LYM-1 cells seemed to
be suitable for the screening of vacuole-inducing
H. pylori. The responses of HeLa cells and LYM-1
cells were compared by means of culture supernates
from 10 strains of *H. pylori* in which the *vacA*
gene had been identified by PCR. At a final dilution
of 1 in 4, *H. pylori* culture supernates, only 20% of
HeLa cells displayed vacuole formation and 100%
in LYM-1 cells. Although there were exceptions,
when cell culture was prolonged for up to 5 days,
LYM-1 cells showed clear evidence of vacuolation
(strain nos. 8 and 10 in Table 1), even when the
culture supernates were diluted to 1 in 16. For
detection of cytotoxic activity in HeLa cells, the
filtrates had to be concentrated before assay [13]; but
in LYM-1 cells, concentration of the culture super-
nates was not required. This is a simple and effective
method for the screening and characterisation of
clinical isolates of *H. pylori*. The use of LYM-1 cells
permitted the detection of minimal vacuolation
activity.

When screening *H. pylori* culture supernates, two
phenomena were observed – vacuolation, and loss
of cell viability. With regard to vacuole formation,
the *H. pylori* culture supernates showed different
properties in LYM-1 cells. There are significant
differences in *vacA* sequences between toxin-positive
and toxin-negative *H. pylori*, and the mutations of the *vacA* gene result in the absence of
cytotoxin production. In the cytotoxin-negative/*vacA-
positive* strains, there are variations in the length of the *vacA* gene [2, 3, 5]. The detailed mechanism of the regulation of the *vacA* gene remains obscure. We suppose that the amount of
cytotoxin produced may be influenced by phenotypic
differences in *H. pylori* strains or the occurrence of a mutation in the *vacA* gene. The
degree of cell death in LYM-1 cells varied amongst the different *H. pylori* supernates. Vacuole
formation was not necessarily correlated with cell
death in LYM-1 cells. This result suggests that the
factor responsible for vacuole formation may be
different from that for cell death.

References

1. Cover TL, Dooley CP, Blaser MJ. Characterization of and
human serologic response to proteins in *Helicobacter pylori*
broth culture supernatants with vacuolizing cytotoxin activity.

2. Phadnis SH, Ilver D, Janzon L, Normark S, Westblom TU.
Pathological significance and molecular characterization of the
vacuolating toxin gene of *Helicobacter pylori*. *Infect Immun*

Helicobacter pylori cytotoxin and evidence of its key role in

4. Cover TL, Cao P, Lind CD, Tham KT, Blaser MJ. Correlation
between vacuolating cytotoxin production by *Helicobacter pylori*
isolates in vitro and in vivo. *Infect Immun* 1993; 61:
5008–5012.

5. Cover TL, Tummuru MKR, Cao P, Thompson SA, Blaser MJ.
Divergence of genetic sequences for the vacuolating cytotoxin
among *Helicobacter pylori* strains. *J Biol Chem* 1994; 269:
10566–10573.

6. Covacci A, Censini S, Bugnoli M et al. Molecular character-
ization of the 128-kDa immunodominant antigen of *Helico-
bacter pylori* associated with cytotoxicity and duodenal ulcer.
Proc Natl Acad Sci USA 1993; 90: 5791–5795.

7. Tummuru MKR, Cover TL, Blaser MJ. Cloning and expression
of a high-molecular mass major antigen of *Helicobacter pylori;*
evidence of linkage to cytotoxicity and duodenal ulcer.

8. Xiang Z, Censini S, Bayeli PF et al. Analysis of expression of
CagA and VacA virulence factors in 43 strains of *Helicobacter pylori*
reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the

9. Tummuru MKR, Cover TL, Blaser MJ. Mutation of the
cytotoxin-associated CagA gene does not affect the vacuolating

10. Cover TL, Halter SA, Blaser MJ. Characterization of HeLa cell
vacuoles induced by *Helicobacter pylori* broth culture supernatant.

11. Catrenich CE, Chestnut MH. Character and origin of vacuoles
induced in mammalian cells by the cytotoxin of *Helicobacter pylori*.

S. Establishment of a new cell line secreting colony stimulating
factor and growth inhibiting factor from metastatic lymph nodes

13. Leunk RD, Johnson PT, David BC, Krafi WG, Morgan DR.
Cytotoxic activity in broth-culture filtrates of *Campylobacter pylori*.

effects of *Helicobacter pylori* on cultured mammalian cells.

15. Cover TL, Parycar W, Perez-Perez GI, Blaser MJ. Effect of
urease on HeLa cell vacuolation induced by *Helicobacter pylori*