ANTIMICROBIAL SUSCEPTIBILITY

A novel plasmid from *Staphylococcus epidermidis* specifying resistance to kanamycin, neomycin and tetracycline

S. SCHWARZ, P. D. GREGORY*, CHRISTIANE WERCKENTHIN, S. CURNOCK* and K. G. H. DYKE*

Institut für Kleintierforschung Celle/Merbitz der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Dornbergstr. 25–27, 29223 Celle, Germany and *Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU.

The naturally occurring plasmid pSTS7 from *Staphylococcus epidermidis* mediated resistance to tetracycline via a *tetL* gene and to kanamycin and neomycin via an *aadD* gene. Plasmid pSTS7 showed partial restriction map and sequence homology to the previously described tetracycline resistance plasmid pNS1981 from *Bacillus subtilis* and to the kanamycin/neomycin/bleomycin resistance plasmid pUB110 from *S. aureus*. Sequence analysis of the regions flanking the two resistance genes in pSTS7 led to the identification of a novel site for interplasmid recombination which could explain the derivation of pSTS7 from the incompatible pNS1981- and pUB110-like parental plasmids under tetracycline-selective pressure.

Introduction

The use of antibiotics in animals, either as feed additives or for therapeutic and prophylactic purposes, promotes the selection of resistant organisms and the spread of antibiotic resistance genes among bacteria of the same genus, and also to those of different genera [1, 2]. Previous studies have shown that pathogenic staphylococci from man and animals carry virtually the same antibiotic resistance genes on mobile genetic elements [3–5].

Tetracycline resistance (Tc') plasmids of staphylococci isolated from man and animals belong to a family of structurally closely related plasmids of c. 4.5 kb [5, 6]; the prototype plasmid of this family, pT181 from *Staphylococcus aureus* [7], has been sequenced completely [8, 9] and its tetracycline resistance gene has been assigned to the class K of bacterial *tet* genes [10]. A second family of Tc' plasmids identified in staphylococci of animal origin carry a *tetL* gene [6, 11], are more variable in size, and contain additional resistance genes [6]. Plasmids that carry *tetL* genes were isolated originally from various *Bacillus* species [12–15], but can replicate and express their resistances in staphylococci [11].

Combined resistance to kanamycin and neomycin is mediated by an aminoglycoside adenyltransferase of the type AAD(4')(4''), the gene for which, designated *aadD*, is located on small plasmids of 4.2–4.5 kb or on larger plasmids of c. 35 kb [5]. The prototype plasmid of the small *aadD*-carrying plasmids, pUB110 from *S. aureus*, has been sequenced completely [16, 17]. Since it replicates at a copy number of 30–50/cell in *B. subtilis* and expresses its *aadD* gene in this host, it is used as a cloning vector in *B. subtilis* [16].

The *tetL*-encoding plasmid pNS1981 from *B. subtilis* [13, 14] and the staphylococcal *aadD*-encoding plasmid pUB110 [16] are homologous except for the region covered by their resistance genes. The regions flanking the resistance genes contain two junctions [18] thought to be involved in the exchange of the resistance gene cassettes. This study describes a naturally occurring plasmid pSTS7 from *S. epidermidis* isolated from a pig after use of tetracyclines to control exudative epidermitis. Plasmid pSTS7 has considerable homology to the two incompatible plasmids pNS1981 and pUB110, but carries the *tetL* gene and the *aadD* gene. Sequence analyses were conducted on the regions flanking both resistance genes to determine the areas that served for co-integrate formation. A model is presented to explain how pSTS7 might have evolved from pNS1981- and pUB110-like precursors under the selective pressure of tetracycline use.

Materials and methods

Bacteria, plasmids and resistance testing

S. epidermidis strain 210 was isolated from the skin swab of a piglet suffering from exudative epidermitis that had been treated with tetracycline. *S. aureus*
RN4220 served as recipient strain in protoplast transformation experiments. Both staphylococcal strains were grown overnight at 37°C on Blood Agar Base (Gibco) supplemented with sheep blood 7.5% w/v. For plasmid preparation S. epidermidis 210 was cultivated overnight in Brain Heart Infusion Broth (Merck) supplemented with either tetracycline (Tc) 30 µg/ml or kanamycin (Km) 30 µg/ml at 37°C on a rotary shaker. Antibiotic resistances were determined by the agar diffusion method [19] on DST Agar (Oxoid) with disks containing tetracycline 30 µg, kanamycin 30 µg and neomycin 30 µg. Escherichia coli JM107, which served as host for recombinant pBluescript vectors, was grown in Luria Bertani (LB) medium or LB solidified with agar 1.5% w/v [20]. Plasmid pBluescript II SK+ was from Stratagene.

Plasmid preparation and Southern blot hybridisation

A previously described modification of the alkaline lysis procedure [21] was used to prepare plasmid DNA from S. epidermidis 210. Restriction endonucleases (Boehringer) were used according to the manufacturer’s recommendations. Transfer of the plasmid fragments from the agarose gels to nitrocellulose membranes followed the capillary blot procedure [20]. An internal 1050-bp BclI fragment of the tetL gene from plasmid pSTE1 [11] served as tetL gene probe and an internal 470-bp ApaI/BglII fragment of the plasmid pUB110 [16] served as aadD gene probe. The gene probes were labelled by the non-radioactive ECL-system (Amer-sham-Buchler). Commercially available T3- and T7-primers (Stratagene) and three primers obtained from the results of these sequence analyses or derived from the published pUB110 sequence were used to analyse the regions flanking the resistance genes.

Results

Isolation and identification of plasmid pSTS7

S. epidermidis 210 was resistant to tetracycline, kanamycin and neomycin and harboured a single plasmid of 5.5 kb. Cells of S. aureus RN4220 transformed with plasmid DNA from S. epidermidis 210 contained a single plasmid of 5.5 kb and were resistant to tetracycline, kanamycin and neomycin, irrespective of which agent was used for selection. The plasmids were indistinguishable by restriction endonuclease analysis from one another and from that of S. epidermidis 210. This plasmid was designated pSTS7.

The restriction endonuclease map of pSTS7 was similar to the tetL gene region of the previously described Tc+ plasmid pNS1981 [13, 14]. tetL-encoding plasmids from *Staphylococcus* spp. [6, 11] and *Bacillus* spp. [12, 15], and to the aadD gene region of the Km'/Nm'/Ble' plasmid pUB110 from S. aureus [16] (Fig. 1). These restriction map homologies were confirmed by Southern blot hybridisation. Three fragments were obtained after BglII and BclI digestion of pSTS7: the tetL gene probe hybridised to a 1050-bp BclI fragment which is of the same size as the internal BclI fragment of tetL genes; the aadD gene probe hybridised to an ApaI/BglII fragment of c. 470 bp.

Transformation, cloning and sequence analyses

Polyethylene glycol-mediated protoplast transformation of the S. epidermidis plasmids into the recipient strain S. aureus RN4220 was performed as described previously [21]. The tetL-encoding plasmid pSTE1 [11] and the aadD-encoding plasmid pUB110 [16] were used as controls. Transformsants were selected on DM3 regeneration plates [22] supplemented with tetracycline 15 µg/ml or kanamycin 300 µg/ml with incubation for 72 h at 37°C. The high concentration of kanamycin was necessary because aminoglycoside antibiotics were partly inactivated by other compounds in the regeneration medium. Transformation of the recombinant pBluescript II SK+ vectors into *E. coli* JM107 followed the CaCl$_2$ method [23].

Plasmid pSTS7 was cleaved with BclI/VbgII and the resulting three fragments were ligated separately into the BamHI site of pBluescript II SK+. Sequence analyses were conducted on both strands by the dideoxy chain termination method [24] with the Sequenase version 2.0 kit and α-35S dATP (Amer-
Fig. 1. Comparison of the restriction maps of the plasmids pNS1981 from B. subtilis, pUB110 from S. aureus and pSTS7 from S. epidermidis. Restriction endonuclease cleavage sites are abbreviated as follows: Ac (AccI), Ap (ApaI), B (BclI), Ba (BamHI), Bg (BglII), C (ClaI), Cf (CfoI), E (EcoRI), Hp (HpaII), Pv (PvuII), and X (XbaI). A distance scale in kb is shown below each map; the arrows indicate the extent and the direction of transcription of the tetL, aadD, repU, pre and ble reading frames. The location of the recombination site A (RSA) is shown in all three restriction maps. Important areas with respect to recombination processes (Fig. 5) are numbered as [1]–[8].

Discussion

The presence of structurally related antibiotic resistance plasmids in a wide variety of staphylococcal species and in bacilli indicated the occurrence of interspecies and intergenus transfer events [6, 11, 25]. The exchange of antibiotic resistance plasmids might be furthered by the presence of the antibiotics used for therapeutic or prophylactic purposes [11].

When transferred into new bacterial hosts, resistance plasmids, such as the aadD-encoding Km'/Nm'/Ble' plasmid pUB110 or the tetL-encoding Tcr plasmid pNS1981, have to face host-specific restriction systems that might protect the host cell from foreign DNA. Other problems that might arise are a general inability to replicate in the new host or the incompatibility of the new plasmid with plasmids already present. These problems can be circumvented by integration of all or part of the plasmid into the chromosomal DNA of the host cell, or by interplasmid recombination of the new resistance plasmid with other plasmids of the new host.

Chromosomal integration has been described for plasmid pUB110 and for tetL-encoding plasmids. In the case of the Km'/Nm'/Ble' plasmid pUB110, integration into the mec region of the chromosome of methicillin-resistant S. aureus is mediated by the insertion element IS257 [26]. In contrast, little is known about the way a tetL gene almost identical to that of plasmid pNS1981 got into the B. subtilis chromosome [27].

Several small S. aureus plasmids undergo site-specific sequence identity to the corresponding pUB110 section and 92.3% nucleotide sequence identity to the corresponding region of pNS1981.

The regions downstream of the repU genes. The plasmids pUB110, pSTS7 and pNS1981 exhibited identical sequences in the downstream part of their repU genes. Although the sequences downstream of the repU coding region were indistinguishable in pUB110 and pSTS7, the sequence identity stopped in pNS1981 16 bp downstream of the translational stop codon of the repU gene (Fig. 3).

The regions downstream of the tetL gene and the ble gene. The tetL gene of pSTS7 showed no sequence homology to any part of the pUB110 sequence, but perfect sequence homology with pNS1981. Homology between pSTS7 and the part of the pUB110 sequence downstream of the bleomycin resistance gene ble started c. 84 bp downstream of the tetL coding region (Fig. 4).
Fig. 2. Nucleotide sequence of the 698 bp BglII/BclI fragment of plasmid pSTS7 (region [6]) which comprises the region between the end of the *aadD* gene and the start of the *tetL* gene. The vertical bars (I) indicate identical bases in comparison to the corresponding sequences of the *aadD* gene of plasmid PUB110 (region [4]) and the *tetL* gene of plasmid pNS1981 (region [1]). The amino-acid sequences of the *aadD*, *tetL* leader and *tetL* reading frames are displayed in the single letter code. Asterisks (*) mark translational stop codons. Important restriction endonuclease cleavage sites with respect to Fig. 1 are indicated. The region that is thought to be involved in co-integrate formation is boxed.
Fig. 3. Comparison of the sequences preceding the \textit{aadD} genes in pUB110 (region [3]) and pSTS7 (region [7]) as well as the \textit{tetL} gene in pNS1981 (region [1]). The vertical arrow (1) indicates a previously described junction point between homologous and non-homologous regions in the plasmids pNS1981 and pUB110. The inverted repeats downstream of the \textit{rep} genes are indicated by arrows (---).

\begin{verbatim}
Fig. 4. Comparison of the nucleotide sequences downstream of the \textit{tetL} genes in pNS1981 (region [2]) and pSTS7 (region [8]) with the corresponding sequence of pUB110 (region [5]). The inverted repeated sequences that represent the rho-independent transcriptional terminator of the \textit{tetL} gene are indicated by arrows (---). The amino-acid sequence of the carboxyterminal part of the TetL protein is given in the one-letter code. Important restriction endonuclease cleavage sites with respect to Fig. 1 are indicated. The vertical arrow (1) indicates a previously described junction point between homologous and non-homologous regions in the plasmids pNS1981 and pUB110.
\end{verbatim}
Fig. 5. Model to explain the derivation of plasmid pSTS7 from pNS1981- and pUB110-like precursors by RSA-mediated co-integrate formation and subsequent intra-plasmid homologous recombination.

interplasmid recombination with formation of stable co-integrates [28]. Recombination sites RSA and RSB are used most often [29, 30], but there are also small areas of sequence homology that serve for homologous recombination of staphylococcal plasmids mediating chloramphenicol and streptomycin resistance [31] as well as chloramphenicol and tetracycline resistance [30].

Co-integrate formation between plasmids of the pUB110 and pNS1981 type allows a possible explanation for the development of plasmid pSTS7. Previous investigations described the aadD-encoding Km'/Nm'/Ble' plasmid pUB110 [16] and the tetL-encoding Tc' plasmid pNS1981 [13, 14] as homologous repU based replication cassettes that harboured different resistance gene cassettes. However, an identical rep gene assigned the respective plasmids to the same incompatibility group. Normally, plasmids of the same incompatibility group cannot be maintained stably together in the same bacterial cell [32], but if recombination systems are intact and the selective pressure is strong, incompatible plasmids can be accommodated by forming a hybrid plasmid consisting of parts from both individual plasmids [33]. Both plasmids, pUB110 and pNS1981, had a recombination site A (RSA) and carried a pre gene that encoded a recombinase that acts on RSA. Thus, the presence of plasmid-encoded recombination systems allowed recombination to occur independently of the host cell-specific recombination systems. Co-integrate formation via RSA might result in a hybrid plasmid that carried two repU and two pre genes, two RSA sites and the resistance genes tetL, aadD and ble (Fig. 5). Since small staphylococcal plasmids replicate via a single-stranded intermediate [34], they are prone to recombination in that state of replication, provided that there are sufficient structural homologies [34]. Thus, the hybrid plasmid could undergo intraplasmid homologous recombination favoured by almost identical sequences flanking the resistance genes in pNS1981 and in pUB110. It is suggested that homologous recombination may have occurred between region [1] in pNS1981 and region [4] in pUB110 (to give rise to region [6] in pSTS7; Fig. 2, boxed area). Such a recombination event would replace the ble gene and its downstream sequences with the tetL gene and its associated regulatory sequences (Fig. 5). Since the sequences downstream of the ble gene in pUB110 and those downstream of the tetL reading frame in pNS1981 are identical, this recombination allowed the exchange of the ble gene by a tetL gene cassette.

The S. epidermidis strain 210 from which pSTS7 was isolated, was obtained from a pig that had received tetracyclines for therapeutic purposes. This could explain the selective pressure that favoured the exchange of Tc' plasmids within a staphylococcal population. Since pUB110-like Km'/Nm'/Ble' plasmids as well as pNS1981-like Tc' plasmids have been shown to be present in the staphylococcal gene pool and have been identified in different epidemiologically unrelated, staphylococcal isolates [5, 6], it is unlikely that a plasmid, such as pSTS7, has developed de novo in the S. epidermidis strain 210. It is more likely to have been derived from putative pUB110 and pNS1981 plasmids as a consequence of recombination events that might be favoured by the incompatibility properties of the plasmids, the presence of plasmid recombination systems, and the selective pressure of the antibiotics used.

The nucleotide sequences presented in this manuscript have been submitted to GenBank and assigned accession number U35229.

The authors thank the British Council and the German Academic Exchange Service (DAAD) for financial support of this collaboration.
References

