Characterisation of an enterotoxin-negative, cytotoxin-positive strain of *Clostridium sordellii*

G. A. GREEN, V. SCHUE, R. GIRARDOT and H. MONTEIL

Laboratoire de Toxinologie Bactérienne, Laboratoire de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, 3 rue de Koeberlé, 67000 Strasbourg, France

In ileal loop assay, ELISA and anion-exchange column chromatography, *Clostridium sordellii* strain 6018 was shown to produce a cytotoxin, but no detectable enterotoxin. DNA sequence and polymerase chain reaction analyses indicated that the lack of enterotoxin activity is not due to a lack of gene transcription, but to lack of a major portion of the enterotoxin gene. This is the first characterisation of such a strain.

Introduction

Clostridium sordellii causes gas gangrene in man, cattle and sheep [1–3]. This gram-positive anaerobic bacterium produces a haemorrhagic enterotoxin (H) and a lethal cytotoxin (L), which have been purified, characterised and shown to be immunologically similar to *C. difficile* enterotoxin A and cytotoxin B, respectively [4–7]. On the genome of *C. difficile* the cytotoxin gene is separated from the enterotoxin gene by a short open reading frame (ORF) which is flanked by short intergenic regions. It was originally thought that nontoxigenic strains of *C. difficile* lack the genes for both enterotoxin and cytotoxin [8–11], but in more recent studies a *C. difficile* strain that produces a modified cytotoxin and lacks the entire 3' portion of the enterotoxin gene and part of the 5' portion has been found [12–14]. Furthermore, *C. difficile* strains of serogroup F possess cytotoxin and entrotoxin genes, but do not produce an enterotoxin and produce a modified cytotoxin [15].

C. sordellii has received less attention. Martinez and Wilkins [7] and Popoff [6] showed that *C. sordellii* strains VPI 9084 and IP 82 produce a cytotoxin and an enterotoxin, and we have studied *C. sordellii* 6018 cytotoxin [4, 5, 16] and its gene [17]. This study examined the failure of *C. sordellii* strain 6018 to produce an enterotoxin and the absence of a major part, or possibly all, of the enterotoxin gene.

Materials and methods

Bacterial strains and growth

C. difficile 68750 and *C. sordellii* 6018 are clinical isolates from this clinical laboratory, and *C. sordellii* VPI 9048 was included as a toxin-positive control. Cultures were grown anaerobically at 37°C in Brain-Heart Infusion Broth (Difco) for 72 h for protein studies and for 24 h for DNA analyses.

Enterotoxin and cytotoxin assays

Cell-free supernates from clostridial cultures were obtained by centrifugation (5000 g, 5 min) and filtration through a 0.45 μm membrane filter. One ml was injected into the ileal loop of an anaesthetised rabbit. Fluid accumulation was measured 18 h later. Positive (*Escherichia coli* LT EWD 299, kindly supplied by Dr S. Falkow) and negative (phosphate-buffered saline) controls were included [18]. Enterotoxin was also assayed with the ToxA ELISA test (Biowhittaker, France) [19]. Cytotoxin assays were performed on McCoy cells cultured at 37°C in a humidified atmosphere of CO₂ 5%, air 95% [19].

Chromatography

Proteins from a further 500 ml of the cell-free supernate were separated by anion-exchange chromatography on a MonoQ HR column, with 0–1 M NaCl gradient elution [4]. Fractions were assayed for cytotoxin activity. Cytotoxin-positive fractions were re-chromatographed and re-tested for cytotoxicity.

DNA extraction and PCR analysis

DNA was isolated from 5 ml of culture [20] and 50 ng were amplified in a total volume of 100 μl [10]. Primers developed for the *C. difficile* enterotoxin gene [10]
Cloning and sequence analysis

All cloning techniques employed were as described by Sambrook et al. [21]. An oligonucleotide probe (5\'-GAAGCAGCTACTGGATGGC-3' and 5\'-AGCA- GATGATATAAAATATTATTTTGAT-3', termed 'ori- genic DNA. Oligonucleotides corresponding to the 5' and 3' ends of this fragment were used to clone overlapping fragments. Two successive oligonucleotide probes were necessary at the 5' end in order to cover the entire C. sordellii cytotoxin gene and its flanking regions, 9.6 kb in all. Fragments were cloned in pUC18 or pCRII and were subcloned into M13 mp130 or mp13 for sequencing. The E. coli host used was TG1 or pCRII. Sequencing was performed with the Pharmacia T7 sequencing kit. All restriction sites used for subcloning were sequenced across.

Sequence data were analysed with DNAStar Software (DNAStar Ltd, London) for the Macintosh Computer.

(5'-GAAGCAGCTACTGGATGGC 3' and 5'-AGCA- GATGATATAAAATATTATTTTGAT-3', termed 'ori- genic DNA. Oligonucleotides corresponding to the 5' and 3' ends of this fragment were used to clone overlapping fragments. Two successive oligonucleotide probes were necessary at the 5' end in order to cover the entire C. sordellii cytotoxin gene and its flanking regions, 9.6 kb in all. Fragments were cloned in pUC18 or pCRII and were subcloned into M13 mp130 or mp13 for sequencing. The E. coli host used was TG1 for pUC and M13 cloning, whereas E. coli strain inv F' was used with pCRII. Sequencing was performed with the Pharmacia T7 sequencing kit. All restriction sites used for subcloning were sequenced across.

Sequence data were analysed with DNAStar Software (DNAStar Ltd, London) for the Macintosh Computer.

Cloning and sequence analysis

All cloning techniques employed were as described by Sambrook et al. [21]. An oligonucleotide probe (5\'-GAAGCAGCTACTGGATGGC-3' and 5\'-AGCA- GATGATATAAAATATTATTTTGAT-3', termed 'ori- genic DNA. Oligonucleotides corresponding to the 5' and 3' ends of this fragment were used to clone overlapping fragments. Two successive oligonucleotide probes were necessary at the 5' end in order to cover the entire C. sordellii cytotoxin gene and its flanking regions, 9.6 kb in all. Fragments were cloned in pUC18 or pCRII and were subcloned into M13 mp130 or mp13 for sequencing. The E. coli host used was TG1 for pUC and M13 cloning, whereas E. coli strain inv F' was used with pCRII. Sequencing was performed with the Pharmacia T7 sequencing kit. All restriction sites used for subcloning were sequenced across. Sequence data were analysed with DNAStar Software (DNAStar Ltd, London) for the Macintosh Computer.
Results

The nucleotide sequence obtained for a 9.6-kb fragment of C. sordellii genomic DNA is presented in Fig. 1. The first long ORF corresponds to the cytotoxin and the second short ORF is unidentified. C. sordellii cytotoxin shows high homology with C. difficile cytotoxin (76% identity, 90% similarity), and the short ORF shows 73% identity and 93% similarity with its C. difficile counterpart.

No enterotoxin activity was found in C. sordellii 6018 culture supernates in the rabbit ileal-loop assay (Table 1), whereas enterotoxin activity was detected for C. difficile 68750 and C. sordellii VPI 9048.

C. difficile and C. sordellii enterotoxins are also cytotoxic, but to a lesser degree than the cytotoxins [7]. Culture supernates for C. difficile 68750 were cytotoxin-positive and two peaks of cytotoxicity were obtained in anion-exchange chromatography eluting between 0.13 and 0.32 M NaCl (enterotoxin) and at 0.5–0.6 M NaCl (cytotoxin). C. sordellii VPI 9048 gave similar results (0.22 M NaCl, enterotoxin and 0.38–0.51 M NaCl, cytotoxin). C. sordellii 6018 yielded a single peak eluting at 0.38–0.43 M NaCl, corresponding to the cytotoxin.

Culture supernates of C. difficile 68750 and C. sordellii VPI 9048 gave positive results in the enterotoxin assay, as did the fractions corresponding to the first cytotoxic peak eluted in anion-exchange chromatography. In contrast, C. sordellii 6018 culture supernate and anion-exchange fractions eluting between 0.1 and 0.3 M NaCl showed no detectable enterotoxin in ELISA.

PCR amplification for C. difficile 68750 resulted in multiple bands characteristic of the repetitive region of the enterotoxin gene [10]. Similarly, PCR amplification of C. sordellii VPI 9048 DNA resulted in a multiple band pattern, distinguishable from that for C. difficile. In contrast, no amplification was found with these primers for DNA isolated from C. sordellii 6018 (Fig. 2).

Discussion

In C. difficile the cytotoxin gene is separated from a short ORF by 122 bp, which in turn is separated from the enterotoxin gene by 726 bp [22]. Sequencing of the cytotoxin gene from C. sordellii 6018 showed a short ORF 210 nucleotides downstream. However, sequences for the next 1400 nucleotides downstream did not reveal another ORF that could correspond to the C. sordellii enterotoxin gene (EMBL accession number, X82638). Furthermore, no sequence homology was found with the recently published NH2-terminal peptide sequence of the enterotoxin [7]. Therefore, C. sordellii 6018 might: (1) produce an active enterotoxin but the small ORF-enterotoxin gene intergenic region may be longer than for C. difficile; (2) possess an enterotoxin gene that is transcribed but the enterotoxin is inactive; (3) possess an enterotoxin gene that is not transcribed or (4) not possess an enterotoxin gene, i.e., the gene could be partially or completely absent. Rabbit ileal loop assay indicated that this strain does not produce an active enterotoxin. The ELISA assay for C. difficile toxin showed strong cross-reaction for the enterotoxin of C. sordellii VPI 9048, but no reaction with supernates or fractions from C. sordellii 6018. Neither of these results eliminates the possibility that either an active enterotoxin is produced, but at levels lower than can be detected, or that an inactive, non-cross-reacting protein is produced. However, together with the DNA sequencing evidence, and the failure to detect amplification with the C. difficile enterotoxin primers, the results strongly indicate that this strain contains a large deletion covering most, if not all, of the enterotoxin gene.
We thank J. M. Scheftel for performing the rabbit ileal-loop enterotoxicity test.

References