The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract

B. W. SENIOR, L. M. LOOMES* and M. A. KERR*

Departments of Medical Microbiology and *Pathology, Dundee University Medical School, Ninewells Hospital, Dundee DD1 9SY

Summary. Immunoblotting of urine from 21 patients of both sexes and of wide age range who had a Proteus mirabilis urinary tract infection (UTI) showed that 14 (64%) specimens contained immunoglobulin A (IgA). In nine (64%) of these the IgA heavy chain had been degraded to fragments of a size identical to those formed when purified IgA was degraded by pure P. mirabilis protease. Urine from patients with clinical evidence of upper UTI contained fragmented IgA and in some of these urine samples P. mirabilis protease activity was detectable. Urine infected with a non-proteolytic strain contained only intact IgA. It is concluded that P. mirabilis IgA protease is produced and is active during infections of the urinary tract.

Introduction

Proteus mirabilis is a common cause of urinary tract infection (UTI) particularly in young boys1,2 and the elderly.3 The consequences of this may be serious because P. mirabilis has a predilection for the upper urinary tract.4,5 The virulence of P. mirabilis for the urinary tract arises through the interplay of several factors that include growth rate,6 motility,7 urease,8-12 possibly fimbriae,13,14 haemolysin15-18 and protocines or proticine receptors or both.3

Recently we reported that P. mirabilis strains of diverse type19 and some strains of other Proteus spp.20 produce an edetic acid-sensitive protease that cleaves the heavy chain of immunoglobulin A (IgA) outside the hinge region. Subsequently we purified the protease and demonstrated its ability to degrade the heavy chains of both serum and secretory IgA1, IgA2 and IgG isotypes.21 Such a broad range of activity against these immunological body defences suggests that the protease may be another important virulence factor of P. mirabilis. Therefore, we investigated the production and activity in vivo of P. mirabilis protease in patients with UTI.

Materials and methods

Urine specimens

Specimens of midstream (MSU) or catheter (CSU) urine were selected at random from those sent for routine bacteriological examination. Only specimens voided and delivered to the laboratory within 2 h, unless refrigerated, were examined. All these contained a pure growth of a Proteus spp. of \(\geq 10^5 \) cfu/ml for a MSU or an equal or lower count for a CSU. After isolation of the infecting organism, the urine specimens were stored at \(-20^\circ C\).

Isolation and identification of bacteria

The urine was plated on CLED Agar (Oxoid CM 301). After incubation overnight at 37°C, the infecting Proteus strain was isolated and identified as described previously.22

Media

Casein-CLED agar consisted of CLED agar 36 g and casein (Sigma) 10 g in 1 L of 50 mM Tris. The casein was dissolved by vigorous stirring and the CLED agar was then added. Gelatin-CLED agar consisted of CLED agar 36 g and gelatin (Sigma, 300 bloom) 10 g in 1 L of 50 mM Tris. Both media were adjusted to pH 8-0, autoclaved at 121°C for 15 min and poured into plates.

Examination for proteolytic activity

Proteus isolates were inoculated on to the above media. After incubation for 16 h at 37°C, the plates were flooded with 1 N HCl. Caseinase and gelatinase activities were revealed as zones of clearing around the growth of proteolytic strains.
Preparation and purification of protease

P. mirabilis strain 64676 was grown overnight at 37°C on sterile dialysis-tubing membranes placed on Blood Agar (Columbia Agar Base, Oxoid CM 331, supplemented with horse blood 5%). The protease was purified from the washings of the cells and membranes by the method described previously.

Purification of IgA1

IgA1 was purified from pooled normal human serum by affinity chromatography of IgA on Jacalin-Sepharose as previously described.

Polyacrylamide gel electrophoresis of urine

Urine specimens were clarified by centrifugation at 11,600 g for 2 min. The supernate was removed and 50 μl was added to 50 μl of disruption buffer (100 mM Tris-HCl, pH 8-0, containing 8 M urea, sodium dodecyl sulphate, SDS, 2% and a trace of bromophenol blue dye) containing 80 mM dithiothreitol. The mixture was boiled for 2 min and 1 M iodoacetamide in disruption buffer was immediately added to the mixture to a final concentration of 100 mM. Protein mol.-wt markers and 60-100-μl volumes of the reduced urine samples were loaded on to a stacking gel of polyacrylamide 3% in 0-125 M Tris-HCl, pH 6-8, containing SDS 0-1% above a discontinuous separating gradient gel of acrylamide 5-15% in 0-375 M Tris-HCl, pH 8-9, containing SDS 0-2%. The upper tank buffer consisted of Tris 0-63%, glycine 0-39%, and SDS 0-1%, pH 8-9, and the lower tank buffer consisted of Tris 1-2%, and SDS 0-1%, pH 8-1. Electrophoresis was performed at 25 mA in the cold until the dye front reached the bottom of the gel.

Immunoblotting

The proteins separated on the polyacrylamide gel were transferred to a nitrocellulose membrane by electrophoresis in methanol 10% containing SDS 0.1% above a discontinuous separating gel containing SDS 0.2% above a resolving gel of acrylamide 11% in 500 ml of Triton X100 2-5% in water, each time for 2 min at 4°C, and then immersed in 50 mM Tris-HCl, pH 8-0, buffer and incubated for 4 h at 37°C. The gel was subsequently stained in Coomassie Brilliant Blue R 250 0-125% in methanol 50% and acetic acid 10% for 2 h and destained overnight in methanol 10% and acetic acid 10% in water. The presence and size of protease was indicated by the position of clear areas of unstained degraded gelatin against a blue background of undegraded stained gelatin.

Detection of protease in urine

Urine specimens were clarified by centrifugation at 11,600 g for 2 min and 50 μl of the supernate was added to 50 μl of sample buffer (0-125 M Tris-HCl, pH 6-8, containing glycerol 20%, SDS 4%, mercaptoethanol 1% and a trace of bromophenol blue dye). The mixture was loaded on to a stacking gel of acrylamide 4% in 0-125 M Tris-HCl, pH 6-8, buffer containing SDS 0-1%, above a resolving gel of acrylamide 11% containing gelatin 0-1% in 0-375 M Tris-HCl, pH 8-9, buffer containing SDS 0-2%. The upper tank buffer was Tris 0-63%, glycine 0-39%, SDS 0-1%, pH 8-9. The lower tank buffer was Tris 1-2% and SDS 0-1%, pH 8-1. Electrophoresis was performed in the cold at 15 mA for 16 h.

To remove SDS, the resolving gel was washed twice in 500 ml of Triton X100 2-5% in water, each time for 1 h at 4°C, and then immersed in 50 mM Tris-HCl, pH 8-0, buffer and incubated for 4 h at 37°C. The gel was subsequently stained in Coomassie Brilliant Blue R 250 0-125% in methanol 50% and acetic acid 10% for 2 h and destained overnight in methanol 10% and acetic acid 10% in water. The presence and size of protease was indicated by the position of clear areas of unstained degraded gelatin against a blue background of undegraded stained gelatin.

Results

Twenty-two specimens of urine from 21 patients (10 male, 11 female) aged 4-97 years were examined (table). In each specimen the infecting organism was P. mirabilis. All the P. mirabilis isolates except strain 29139G were proteolytic and degraded both gelatin and casein.

The results of the immunoblots of 18 of the 22 urine specimens are presented in fig. 1. Purified protease from P. mirabilis strain 64676 degraded the α chain of purified IgA1 (66 Kda) (lane 1) to two fragments of 60 and 47 Kda (lane 2). Eight (36%) urine specimens did not contain detectable IgA. Five (23%) urines contained different amounts of intact α chain and nine (41%) contained α chain that had been degraded to fragments of 60 and 47 Kda or a fragment of 47 Kda only. Specimen M, which was infected with the non-proteolytic strain of P. mirabilis, contained a significant amount of intact α chain but not chain fragments.

Electrophoretic analysis of urine on acrylamide-gelatin gels showed that four specimens contained active protease indistinguishable in size from that of pure P. mirabilis protease (fig. 2). These urine specimens were some of those in which α chain fragments were detected.

Discussion

Secretory IgA in mucous secretions protects mucous membranes from damage by micro-organisms and
Table. Specimens of *P. mirabilis*-infected urine examined for IgA and IgA fragments

<table>
<thead>
<tr>
<th>Specimen</th>
<th>P. mirabilis isolate</th>
<th>Type of specimen</th>
<th>IgA</th>
<th>detected</th>
<th>intact</th>
<th>fragmented</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>02337R</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>27831K</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13102F</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>32262R</td>
<td>MSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>27729A</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>26071V</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>10966V</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>03066S</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>32404B</td>
<td>MSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>17074G</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15585X</td>
<td>MSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>29878D</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>29139G</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>29066K</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>17410Y</td>
<td>CSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>28707N</td>
<td>MSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>32114W</td>
<td>ND</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>26927W</td>
<td>MSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S*</td>
<td>30691Y</td>
<td>CSU</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>30298G</td>
<td>CSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>28287K</td>
<td>CSU</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>00030F</td>
<td>ND</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND, urine specimen not defined.
* Specimens from same patient.

Fig. 1. Immunoblot of electrophoresed *P. mirabilis*-infected urine samples with alkaline phosphatase-conjugated goat anti-human a-chain-specific IgA. Lane 1, purified serum IgA; 2, purified serum IgA, digested with purified *P. mirabilis* strain 64676 protease to fragments of 60 and 47 Kda; A-R, *P. mirabilis*-infected urine specimens. Urine samples I, K, O, P, and R (and T, U and V not shown) did not contain detectable IgA. Urine samples A, B, D and M (and S not shown) contained different amounts of intact a-chain. Urine samples C, F, H, J, L and N contained a-chain fragments of 60 and 47 Kda and urine samples E, G and Q an a-chain fragment of 47 Kda.
their products by inhibiting adhesion and colonisation and by neutralising toxins and enzymes. Only a few bacterial pathogens produce enzymes capable of degrading IgA, and since other related but non-pathogenic species do not form IgA proteases, their production may be associated with virulence. The ability of these proteases to function in vivo is suggested by the demonstration of α-chain fragments in vaginal secretions from women with gonococcal infection and in cerebrospinal fluid from patients with Haemophilus influenzae meningitis.

The protease of P. mirabilis is somewhat different from other IgA proteases because its activity is not confined to the IgA1 isotype but includes serum and secretory IgA2, IgG and other non-immunoglobulin proteins including secretory component, casein and bovine serum albumin. Such a wider range of activity is clearly to the advantage of an organism seeking to establish infection.

We have, for the first time, shown here that 64% of urines from patients with P. mirabilis UTI in which IgA was detectable contained α-chain fragments of a size identical to those formed when the α-chain is degraded by pure P. mirabilis protease. Such fragments were not formed when the infecting strain was non-proteolytic. This is indirect evidence for the production and activity in vivo of P. mirabilis protease in UTI. The formation of α-chain fragments of 60 and 47 Kda is a feature of low protease activity or early degradation, whereas formation of a single fragment of 47 Kda is a feature of high protease activity or more extensive degradation (unpublished results).

Some of the urine specimens in which α-chain fragments were found were also shown by electrophoresis on gelatin-acrylamide gels to contain a protease of the same size as pure P. mirabilis protease. This is direct evidence of production in vivo of P. mirabilis protease in urine. Electrophoresis on acrylamide-gelatin gels is an extremely sensitive method of detecting protease. However, in spite of this, protease activity was not detected in some urine samples in which IgA fragments were found. We believe this to be the result of loss of enzyme activity on storage. The urine samples were stored at -20°C to preserve antibody and antibody fragments. Subsequently we have found protease activity to be more stable at 4°C.

The pH optimum for P. mirabilis protease is pH 8 (unpublished results). Therefore, under normal circumstances of infection, the infecting P. mirabilis strain will form urease, degrade urea and produce alkaline conditions that will permit the protease to act in vivo at its optimal rate. However, five patients had urine in which the IgA remained intact. For specimen M, this appeared to be because the infecting strain was non-proteolytic. For specimens A, B, D and S with pH values of 9, 8, 9 and 9 respectively, lack of α-chain degradation was not due to unfavourable pH. Failure to detect fragments in these specimens may have been because of insufficient protease to cause degradation, or too short an incubation period for degradation to have taken place. Alternatively, because it is thought that IgA protease activity may be subject in vivo to anti-protease antibody, the IgA may have remained intact because antibody to the protease had been formed during a previous UTI with P. mirabilis. The latter hypothesis would explain why α-chain fragments were not detected in urine specimen S, though they had been present during an infection 17 days earlier (specimen E).

All specimens in which degraded IgA fragments were found came from CSU specimens from elderly patients (mean age 72 years) of both sexes with clinical evidence of UTI, although the bacterial count of some
was only 10^7–10^8 cfu/ml. On the other hand, urines in which IgA was not detected, were from younger patients (mean age 43 years) for whom clinical evidence of infection, before microbiological confirmation, was generally less clear, and they included four of the five MSU specimens. The significance of these clinical observations must be established to understand more fully the in-vivo role of IgA protease in UTI.

We acknowledge with gratitude the financial support of the Scottish Home and Health Department.

References