Selected faecal bacteria and nutrients essential for antagonism of *Salmonella typhimurium* in anaerobic continuous flow cultures

T. USHIJIMA and A. SETO

Department of Microbiology, Shiga University of Medical Science, Otsu, Shiga 520-21, Japan

Summary. As few as five of the species of bacteria commonly found in human faeces—*Escherichia coli*, *Enterobacter aerogenes*, *Enterococcus faecalis*, *Bacteroides ovatus* and *Fusobacterium varium*—when grown together in anaerobic continuous flow cultures exerted antagonistic effects on *Salmonella typhimurium* as great as those given by mixed bacteria from extracts of human faeces. In a single culture, the population of *S. typhimurium* was c. 10⁶ cfu/ml but in mixed cultures with the five antagonistic bacteria or mixed faecal bacteria it was reduced to c. 10³ cfu/ml. Antagonism appeared to be the result of competition for the growth limiting amino acids, arginine, serine, threonine and aspartic acid. Optimal manifestation of antagonism required the presence of carbon sources fermentable only by antagonistic bacteria, such as lactose 0-1% w/v, sucrose 0-1% (w/v) and starch 0-2-0-3% w/v. These carbohydrates promoted the growth of the antagonistic bacteria, particularly *E. coli* and *B. ovatus*. However, an increase in concentration by several fold of any one of four growth-limiting amino acids in the medium diminished the antagonistic effects and the population of *S. typhimurium* rose 10²-10³-fold.

Introduction

Competitive exclusion by the normal bacterial flora is considered to be the main mechanism of elimination of various enteropathogens from the intestinal tract of man and animals. This principle has been applied successfully to eliminate food-poisoning *Salmonella* spp. from the intestinal tract of animals.¹ Food poisoning by *S. typhimurium* and *S. enteritidis* has been increasing recently in England² and the USA,³ partly through an increase in eggs and chicken meat contaminated by salmonellae. One of the best ways to prevent this has been to administer orally to newly hatched chickens a mixture of pure cultures of bacteria from the caecal flora of adult chickens.⁴ However, the main bacterial species and the precise mechanisms responsible for the competitive exclusion of salmonellae are unknown.

The anaerobic continuous flow (CF) culture method has been considered to be an excellent tool for in-vitro studies of interactions among colonic bacteria.⁵,⁶ Through its use we found that *S. typhimurium* was the most resistant of several enteropathogens to the antagonistic effects of some bacteria from human faeces.⁷ In this study, identification was made of nutrients and a group of bacterial species of the normal human faecal flora essential for the antagonism of the growth of *S. typhimurium* in anaerobic CF cultures.

Materials and methods

Bacterial strains

Bacteria used were *Escherichia coli* strain, SU 5034, ATCC 25922, ATCC 11775 and IFO 12713, *S. typhimurium* strain LT-2, *Enterobacter aerogenes* strain IFO 13534, *Bacteroides ovatus* strain SU 39, *Fusobacterium varium* strain ATCC 8501 and *Enterococcus faecalis* strain IFO 12969. Most strains were obtained from the American Type Culture Collection (ATCC) and Institute for Fermentation, Osaka (IFO). Others were stock cultures from this laboratory (SU: Shiga University). Some of the biological characteristics of these bacteria are shown in table I.

Inocula

Bacteria were cultivated in semi-solid (agar 0-1% w/v) maintenance medium⁸ at 37°C for 18-20 h in air. Cultures were suspended in sterile saline at a concentration of c. 5 x 10⁶ cfu/ml (McFarland tube No. 3-4). Fresh human faeces was suspended in sterile saline (1:9) and homogenised by a Teflon homogeniser. The preparation was allowed to settle for 10 min and 0-1 ml of the upper layer was inoculated into tubes (12 x 120 mm) of semi-solid maintenance medium and incubated at 37°C for 20 h. Cultures were suspended in sterile saline to the same density as that of the pure
Table I. Some characteristics of the bacterial strains used

<table>
<thead>
<tr>
<th>Organism</th>
<th>Fermentation* of</th>
<th>Consumption of amino acids in MCM medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sucrose lactose</td>
<td>arginine serine threonine aspartic acid</td>
</tr>
<tr>
<td>E. coli SU 5034</td>
<td>+ +</td>
<td>+† + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>ATCC 25922</td>
<td>− +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>ATCC 11775</td>
<td>− +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>IFO 12713</td>
<td>− +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>S. typhimurium LT-2</td>
<td>+ +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Ent. aerogenes IFO 13534</td>
<td>+ +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>B. ovatus SU 394+</td>
<td>+ +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>F. varium ATCC 8501§</td>
<td>− −</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Ec. faecalis IFO 12969</td>
<td>+ +</td>
<td>− + + + + + + + + + + + + + + + +</td>
</tr>
</tbody>
</table>

* + , Fermentation; − , No fermentation.
† Residual quantities of most of these amino acids in single anaerobic static cultures containing MCM medium (glucose 0·05%, starch 0·2%) were <10 μM.
‡ Starch fermenting strain.
§ Glutamic acid utilising strain.

Analysis of the interaction of different bacteria in the anaerobic CF culture system

Analysis of the interaction of different bacteria was made in an anaerobic CF culture system (fig. 1). The CF culture was incubated at 37°C and stirred by a Teflon covered magnetic stirring bar (20 mm long, 6 mm diam.) at 300-400 rpm to prevent sedimentation and clumping of bacterial cells. The dilution rate of the culture medium was 0·05/h. MCM (mock contents of the caecum of mice) medium7,11 without acetic, propionic, butyric, lactic and succinic acids was the basal medium for cultivation of bacteria in the CF cultures. In the preliminary study,12 a medium optimally suited for demonstrating antagonistic effects on S. typhimurium in anaerobic CF cultures had been devised. This was the basal MCM medium supplemented with starch 0·2% w/v, glucose 0·05% w/v, lactose 0·1% w/v, sucrose 0·1% w/v and sorbose 0·05% w/v. The number of viable cells of each bacterial species co-cultivated in the CF cultures was determined by counting on selective media.

Selective media

The selective media for viable counting of bacteria have been reported previously.8,13 E. coli was recovered on ALPPL medium without penicillin and lincomycin but supplemented with sorbose 0·05% w/v to stimulate growth of some E. coli strains. Ent. aerogenes was counted in ASC medium supplemented with ampicillin 1 μg/ml instead of streptomycin and colimycin.

Analysis of residual amino acids in culture media

Bacteria were removed from the static or CF culture media by centrifugation at 4000 g for 15 min and the clear supernate was filtered through membranes of 0·45-μm pore size. One portion of the filtrate was mixed with two portions of sulphosalicylate solution 5% w/v and centrifuged at 4000 g for 10 min. The clear supernate (100 μl) was applied to a JLC-200A automatic amino-acid analyser (Japan Electron Optics, Co. Ltd, Tokyo) equipped with glass column (6 x 120 mm) packed with cation exchange resin, CK-10U (Mitsubishi Kasei Co. Ltd).
Results

Comparison of the antagonistic effects of five selected species and mixed human faecal bacteria in CF cultures containing optimum MCM medium

The final population level of S. typhimurium growing alone in the CF culture system containing optimum MCM medium was c. 1.2×10^8 cfu/ml. However, the final population of S. typhimurium in CF cultures co-cultivated with either the selected five faecal bacterial species, including arginine-consuming E. coli strain SU 5034, or mixed faecal bacteria was c. 10^3 cfu/ml (fig. 2). These results indicate clearly that the mixture of the five faecal species showed antagonistic effects as potent as those produced by mixed faecal bacteria. The omission of any one of the five bacterial species resulted in a decrease in antagonistic effect (table II). Thus manifestation of optimum antagonistic effects required the presence of all five bacterial species, but not of other bacteria.

Influence of sugars in the media on the antagonistic effect

When the five antagonistic bacterial species and S. typhimurium were co-cultivated in the CF culture system containing optimum MCM medium without any of the five carbohydrates, the antagonistic effects disappeared almost completely and all bacteria co-cultivated persisted in a narrow population range of c. 3×10^6–2×10^7 cfu/ml (fig. 3).

Sucrose and lactose were fermented by the antagonistic bacteria but not by S. typhimurium. The population of S. typhimurium co-cultivated with the five antagonistic bacterial species in CF cultures containing optimum MCM medium without lactose and sucrose was c. 10^6 cfu/ml (fig. 4A). The population of

<table>
<thead>
<tr>
<th>Strain</th>
<th>Final population (log$_{10}$ cfu/ml) in culture no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>3.06 4.96 4.13 5.26 5.98 5.73</td>
</tr>
<tr>
<td>E. coli SU 5034</td>
<td>8.43 – 8.71 8.27 7.98 8.68</td>
</tr>
<tr>
<td>Ent. aerogenes</td>
<td>7.76 8.3 – 6.86 7.94 6.32</td>
</tr>
<tr>
<td>Ec. faecalis</td>
<td>7.16 7.72 7.54 7.59 6.8 –</td>
</tr>
<tr>
<td>F. varium</td>
<td>3.83 6.26 5.89 5.13 6.74 –</td>
</tr>
<tr>
<td>pH of cultures</td>
<td>6.26 6.23 6.24 6.31 6.61 6.30</td>
</tr>
</tbody>
</table>

* Mean of population at 2 and 3 days.
† Strain omitted.

Fig. 2. Comparison of antagonistic effects of five species of faecal bacteria and mixed faecal bacteria on S. typhimurium in anaerobic CF cultures containing optimum MCM medium. A, viable counts of S. typhimurium (1), B. ovatus (2), E. coli SU 5034 (3), Ent. aerogenes (4), Ec. faecalis (5) and F. varium (6) when all were grown together. B, viable counts of S. typhimurium (1) and all aerobic (2) and anaerobic (3) bacteria of three samples (a, b, c) of human faeces when cultured together.
containing optimum MCM medium devoid of starch was c. 10^5 cfu/ml. The population of *S. typhimurium* gradually decreased with an increase in starch concentration and reached the lowest level of c. 10^3 cfu/ml in the presence of 0.2–0.3% of starch (fig. 4B).

Comparision of antagonistic effects of arginine-positive and -negative E. coli

In the mixed CF cultures containing the optimum MCM medium and the five faecal bacterial species, the population of *S. typhimurium* was $>10^2$-fold lower in the presence of arginine-positive *E. coli* than in the presence of arginine-negative *E. coli* (fig. 5A).

In the mixed CF cultures with the five faecal bacterial species including arginine-negative *E. coli*, the population of *S. typhimurium* was 10^1–10^2-fold lower in the optimum MCM medium devoid of free arginine than in the optimum medium containing 1400 μM of free arginine (fig. 5B).

Influence of increasing concentrations of growth limiting amino acids on the antagonistic effect

When the concentrations in the optimum MCM medium of any one of the four growth limiting amino acids—arginine, serine, threonine and aspartic acid—was increased by 2000 μM, the antagonistic effect of the five faecal bacterial species including arginine-positive *E. coli* on *S. typhimurium* decreased and the population of *S. typhimurium* increased 10^2–10^3-fold (fig. 6A).

The final population of *S. typhimurium* in both of
Fig. 5. Comparison of the antagonistic effects of the five faecal bacterial species on *S. typhimurium* in optimum MCM medium when: A. the *E. coli* representative strain was arginine negative, IFO 12713 (1); ATCC 11775 (2) and arginine positive ATCC 259221 (3); SU 5034 (4); B, the *E. coli* strains included both arginine negative strains IFO 12713 (1) and ATCC 11775 (2), in the optimum MCM medium with (A) and without (B) 1400 µM arginine.

Fig. 6. Influence of four growth-limiting amino acids on the populations of *S. typhimurium* in mixed CF cultures with the five faecal bacterial strains shown in fig. 2A. A, addition of 2000 µM of arginine (1), serine (2), threonine (3) and aspartic acid (4), to the optimum MCM medium (5); B, addition of various amounts of arginine—95 µM (2), 345 µM (3), 595 µM (4), 2095 µM (5)—to the optimum MCM medium without free arginine (1).
the CF cultures containing MCM medium with and without 95 μM free arginine was the same. Additional increments of arginine resulted in a gradual elevation of the S. typhimurium population to a maximum in the presence of 595 μM arginine (fig. 6B).

Residual amino acids in the CF culture media

In the mixed CF cultures containing MCM medium supplemented with either 95 or 595 μM arginine, concentrations of most of the four growth-limiting amino acids were ≤5 μM (table III).

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Concentration of growth-limiting amino acid (μM) in CF medium with arginine (μM)</th>
<th>uninoculated medium with 95 μM arginine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>1·1 1·7 89</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td><1·0 2·7 136</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>5·3 2·6 300</td>
<td></td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>4·6 14·6 76</td>
<td></td>
</tr>
</tbody>
</table>

Table III. Residual concentration of the four growth-limiting amino acids after growth in mixed anaerobic CF cultures of five antagonistic faecal bacterial species and S. typhimurium

Discussion

With only five of the bacterial species commonly found in human faeces—E. coli, Ent. aerogenes, Ec. faecalis, B. ovatus and F. varium, antagonistic effects against S. typhimurium could be produced in anaerobic CF cultures as potent as those given by mixed bacteria from extracts of human faeces. It appeared that this was achieved by competition for growth-limiting nutrients, such as arginine, serine, threonine and aspartic acid.

Hudault et al. showed potent antagonistic effects of caecal flora of conventional chickens on S. typhimurium in gnotobiotic mice and chickens. Regrettably however, they did not find any combinations of bacterial species that showed antagonistic effects on S. typhimurium as potent as those of whole caecal flora.

In attempting to develop a pure-culture treatment, many authors reported that chickens were successfully protected against colonisation by S. typhimurium when given a pure culture of, e.g. Ec. faecalis, or Clostridium spp., or E. coli; or various Salmonella spp. However, Impey et al. suggested that not only was a limited number of strains unlikely to confer complete protection but that they may disturb the ecological balance of the intestinal tract. They found a group of bacterial strains which, when administered orally, prevented colonisation by S. typhimurium of the caeca of newly hatched chickens. The treatment conferred the same protection as that given by a suspension of the caecal contents of adult chickens. The group comprised as many as 48 different bacteria including several unidentified isolates.

Most previous studies, including the latter on the antagonistic effects of intestinal bacteria on S. typhimurium, have been made in conventional animals and thus it is difficult to distinguish between the role of the inoculated bacteria and that of bacteria already present in the intestinal tract. The mechanisms by which colonic bacteria normally antagonise S. typhimurium and other food poisoning Salmonella spp. are difficult to study in vivo even if gnotobiotics are employed, because precise manipulation of the growth environment is not possible. Anaerobic CF cultures can reproduce many of the bacterial interactions that occur in the large intestine and the mechanisms which regulate in vivo the bacterial population. Moreover, the various factors that influence these interactions are more easily controlled.

In mixed anaerobic CF cultures, potent antagonistic effects on S. typhimurium were manifest only in the presence of all five bacterial species, including an E. coli strain that had the ability to utilise arginine, serine, threonine and aspartic acid. S. typhimurium also actively utilised these amino acids. Substitution of the arginine-utilising E. coli strain by an arginine-negative E. coli strain provoked a massive decrease in antagonistic effect. In this situation, the amount of arginine available to S. typhimurium may be increased and, thus, this bacterium may be able to reach a higher population density. This assumption was supported by the fact that, in optimal MCM medium without free arginine, both clusters of the five antagonistic bacteria including either an arginine-positive or an arginine-negative E. coli strain showed similar potent antagonistic effects.

In addition, the presence of some carbohydrates, such as sucrose, lactose and starch, which were fermented only by antagonistic bacteria, was also necessary for manifestation of the potent antagonistic effects. Inclusion of these carbohydrates in the MCM medium promoted a large increase in the population of the antagonistic bacteria, especially E. coli and B. ovatus, and thereby a diminution in the amount of growth-limiting nutrients.

Even in the optimal conditions for manifestation of the antagonistic effects, i.e., in the presence of arginine-consuming E. coli and carbohydrates fermentable by only the antagonistic bacteria, an increase of several-fold of only one of the growth-limiting nitrogen sources—arginine, serine, threonine or aspartic acid—in the optimal MCM medium resulted in a sharp decrease in the antagonistic effects, and the population of S. typhimurium increased 10²-10⁵-fold.

An increase in the free arginine concentration of the optimum MCM medium from 0 to 95 μM did not influence the population of S. typhimurium in the mixed CF cultures. However, further increases in the arginine concentration promoted growth of
S. typhimurium to the maximum level at an arginine concentration of 595 µM. The residual amount of most of the four growth-limiting amino acids in the CF cultures in optimum MCM media supplemented with either 95 µM or 595 µM arginine was ≤ 5 µM. In these culture environments of low concentrations of growth-limiting amino acids, the five antagonistic bacterial species and S. typhimurium competed with one another, particularly for arginine, and this resulted in c. 10^3-fold difference in the population of S. typhimurium.

These results indicate clearly that the mechanism of antagonism of the five bacterial species on S. typhimurium was the competition for growth-limiting amino acids. They verify the hypothesis of Freter et al. that populations of the colonic flora are controlled by one or a few growth-limiting nutrients.

Omission of any one of the five bacterial species from the mixed CF cultures resulted in a massive decrease of the antagonistic effects. Thus each one contributed to the inhibition of growth of S. typhimurium by a mechanism not yet determined.

As suggested by Freter et al., the anaerobic CF culture method can reproduce many of the bacterial interactions that occur in the colon, and these results may contribute to the development of methods for the reduction of food poisoning outbreaks.

References