Antimicrobial resistance in *Haemophilus influenzae*

MAIR POWELL

Department of Medical Microbiology, The London Hospital Medical College, Turner Street, London E1 2AD

Since the early 1970s, recognition of the increasing prevalence of resistance to several antimicrobial agents among clinical isolates of *Haemophilus influenzae* in many countries has brought about changes in prescribing practices. Direct comparison of susceptibility test results from various centres cannot be made without consideration of the factors known to have a crucial effect on the apparent in-vitro resistance of this species to many antimicrobial agents. These include the medium, antibiotic concentration in the disk and, particularly, the size of inoculum used. The variety of zone diameters and minimum inhibitory concentrations (MICs) employed as susceptibility breakpoints in different studies reflects not only the range of methods used but also the lack of agreement on the relationship of in-vitro results to in-vivo efficacy of an antimicrobial agent against *H. influenzae*.

Despite the problems of interpretation of results, it has become clear that isolates of *H. influenzae* of Pittman (capsule) type b merit separate consideration because of their propensity to cause invasive infections. Several national studies have reported a consistently higher prevalence of β-lactamase production among isolates of type b when compared with non-capsulate *H. influenzae* (Doern et al., 1986; Powell et al., 1987; Machka et al., 1988) and some have found that type-b isolates are more likely to be resistant to other antimicrobial agents (Dabernat et al., 1986). Although they are responsible for most cases of invasive disease, this difference is also seen between type-b isolates producing non-invasive disease and the non-capsulate organisms more commonly responsible for less serious infections. Hence, differentiation of type-b isolates from those which are non-capsulate or of other capsule types is an important consideration in any study of the prevalence and nature of antimicrobial resistance in this species and is crucial in the interpretation of the prevalence data.

**Resistance to β-lactams**

*H. influenzae* type-b infections which failed to respond to ampicillin therapy prompted some of the earliest reports of resistance to antimicrobial agents in use against this species (Gunn et al., 1974). The prevalence of β-lactamase-producing *H. influenzae* identified from United Kingdom surveys rose from 1·6% in 1977 (Howard et al., 1978) to 18% amongst type-b isolates and 6·2% overall in 1986 (Powell et al., 1987). In Europe, β-lactamase production is most common among type-b (64%) and non-capsulate (26%) Spanish isolates (Machka et al., 1988). Spain has a particular problem in the Barcelona area where 57% of type-b isolates responsible for meningitis are β-lactamase positive and also resistant to chloramphenicol (Campos et al., 1986). A multi-centre study in the USA reported that, overall, 32% of type-b and 16% of non-capsulate clinical isolates were β-lactamase positive (Doern et al., 1988) but noted a geographical variation in prevalence among type-b isolates from <10% to >90%.

Medeiros and O'Brien (1975) established that the enzymes present in some early β-lactamase producers were TEM-like in character. De Graaff et al. (1976) found that the transposon coding for β-lactamase production could be located on either large or small plasmids of mol. wts (10⁶) 30 and 3 respectively, which were otherwise unrelated in their nucleotide sequences. Several workers, however, have demonstrated that the genes encoding β-lactamase and resistance to several other antimicrobial agents in *H. influenzae* are not always situated on extrachromosomal DNA. Stuy (1980) found that isolates with several different resistance patterns were frequently free of detectable plasmids. Murphy-Corb et al. (1984) failed to detect extrachromosomal DNA in 43 of 66 β-lactamase-producing isolates of *H. influenzae*. The plasmid-free isolates conjugally transferred resistance to an ampicillin-susceptible recipient at a lower frequency than their plasmid-containing counterparts but offspring of
both types of donor contained extrachromosomal DNA as single bands (mol. wt $30 \times 10^6$). By restriction-enzyme analysis and Southern-hybridisation techniques, entire plasmid sequences were detected within the chromosome of four plasmid-free $\beta$-lactamase-producing type-b isolates. Mendelman et al. (1985) also found that whereas most (29 of 36) Alaskan $\beta$-lactamase-producing H. influenzae isolates of type b were plasmid-free, many of the resistant transconjugants obtained harboured extrachromosomal DNA.

The demonstration by Roberts and Smith (1980) that large plasmids in H. influenzae are easily overlooked if a single method of lysis is used raised worries that plasmid DNA sometimes co-migrated with chromosomal DNA giving an alternative explanation for probe hybridisations with chromosomal bands. However, Mendelman et al. (1985) were able to show in their study, and during an investigation of ampicillin- and chloramphenicol-resistant isolates (Mendelman et al., 1984a), that plasmid probes bearing specific R-determinants hybridised with both the chromosomal and extrachromosomal DNA of those isolates of H. influenzae found to contain plasmids.

Whilst the mechanism of cell-to-cell transfer of chromosomal gene sequences coding for $\beta$-lactamase production and resistance to other antimicrobial agents has not been fully elucidated, transformation of H. influenzae by haemophilus DNA has been shown to be an efficient process involving uptake of transforming DNA into cell-surface membranous structures (transformasomes) which afford some degree of protection against enzymic degradation (Barany and Kahn, 1985). Thus, a hypothesis that implicates transformation in cell-to-cell transfer of chromosomal gene sequences is attractive but it is not known to what extent this process occurs in vivo.

Production of a TEM-1 $\beta$-lactamase is the predominant, but not the sole, mechanism of ampicillin resistance in H. influenzae. In 1981, Rubin et al. reported the presence of a novel $\beta$-lactamase, later called ROB-1, in a type-b isolate causing meningitis. The enzyme was not detected by the initial cell-suspension chromogenic-cephalosporin assay but did produce a positive result when the test was repeated with a very heavy inoculum. Iso-electric focussing demonstrated that ROB-1 had a very different Pl (8.1) from that of TEM-1 (5.4) and slightly different $\beta$-lactam-hydrolysis rates. Production of the novel enzyme was lost after curing a similar-sized plasmid identified in two isolates from the patient’s blood and cerebrospinal fluid. A possible source for ROB-1 was suggested when Medeiros et al. (1986) discovered that ampicillin-resistant H. pleuropneumoniae, a swine pathogen, also produced ROB-1 and that the plasmids encoding the enzyme in both Haemophilus species were closely homologous.

Early reports of resistance to ampicillin that was not mediated by $\beta$-lactamase production included that found in several non-capsulate isolates from respiratory specimens (Bell and Plowman, 1980) and in sporadically occurring type-b isolates (Markowitz, 1980; Offit et al., 1982). In a survey in the UK in 1986 (Powell et al., 1987) 100 isolates (4.1%) were identified that showed reduced zone diameters (<20 mm) to 2-µg ampicillin disks and required ampicillin concentrations between 1 and 64 mg/L for inhibition. These isolates appear to be generally uncommon in Europe (Machka et al., 1988) and the USA (Doern et al., 1988), but it is not possible to gauge accurately the worldwide prevalence of this non-lactamase-mediated (“intrinsic”) resistance because of the problems which have become apparent in its detection. Establishment of a resistance breakpoint for these isolates must be referenced to susceptibility-testing methods adopted and is complicated by the observation that they rarely require more ampicillin than 4 mg/L for inhibition (Powell and Williams, 1988).

Attempts to identify the mechanism responsible for this type of resistance have concentrated on differences in penicillin-binding and outer-membrane proteins (PBPs and OMPs) between these isolates and those susceptible to ampicillin. PBP changes noted in a type-b isolate studied by Parr and Bryan (1984) and in transformants derived from four non-capsulate isolates investigated by Mendelman et al. (1984b) suggested that such differences played an important role in non-lactamase-mediated resistance. A chromosomal location for the genes determining resistance was postulated. It is unfortunate that interpretation of PBP studies is complicated by the natural variation seen in H. influenzae. Whilst both Makover et al. (1981) and Serfass et al. (1986) identified eight major PBPs in this species, the latter study demonstrated a considerable variation in profiles among ampicillin-susceptible isolates. These differences were even more pronounced among those with non-lactamase-mediated resistance although a strong association with a change in PBP 5 was noted.

Outer-membrane protein profiles of both type-b and non-capsulate isolates have proved to be even more diverse (Loeb and Smith, 1980). Although Reid et al. (1987) have recently documented profile differences between ampicillin-susceptible and am-
Table I. Modal MICs of β-lactamase-stable antimicrobial agents against *H. influenzae*

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Modal MIC for 2458 isolates (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin and clavulanic acid (2:1)</td>
<td>0.5</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>4.0</td>
</tr>
<tr>
<td>Cefixime</td>
<td>0.03</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>0.06</td>
</tr>
<tr>
<td>Imipenem</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Picillin-resistant, β-lactamase-negative isolates of the same biotype, no specific protein change has been implicated as being responsible for this phenomenon. Indeed, the variable reduction in susceptibility of isolates of this type (Powell and Williams, 1987a, b) (see tables I and II) to other β-lactams supports the conclusion, inferred by the investigations described, that several different mechanisms may be involved. In addition, the degree of genetic and phenotypic diversity among β-lactamase-negative, ampicillin-resistant, non-typhoidal *H. influenzae*, based on results from multilocus enzyme electrophoresis, auxotroph testing and PBP profiles, has excluded the possibility of a single recent origin for these isolates (Mendelman et al., 1987).

Since the advent of ampicillin resistance in *H. influenzae*, many β-lactamase-stable compounds have proved to be highly active in vitro and in vivo against ampicillin-susceptible and resistant β-lactamase-positive organisms. The implications of the finding that ampicillin-resistant, β-lactamase-negative isolates show reduced susceptibility to many of these compounds have yet to be evaluated. The reduction in susceptibility observed is rarely of such a degree that these isolates can be considered resistant on in-vitro testing according to the criteria established for any one agent (Powell and Williams, 1988). Whether differences between the modal MICs of various β-lactams among these isolates and the corresponding modal values for the ampicillin-susceptible population are sufficient to give rise to treatment failures will be most crucial when these agents are used for treatment of infections at sites where their penetration is unreliable or poor.

**Chloramphenicol**

The rising prevalence of ampicillin resistance, particularly among type-b isolates, promoted the use of chloramphenicol as first-line therapy of invasive *H. influenzae* disease. Although resistance to chloramphenicol has been reported quite frequently since the mid-1970s in both type-b and non-capsulate isolates, its prevalence is still low in many countries. Doern et al. (1986) reported resistance in <1% of isolates in the USA, Powell et al. (1987) in <2% of isolates in the UK and Machka et al. (1988) in <2% of isolates in most European countries with the exception of Belgium (11% in type-b and non-b isolates) and Spain (41% in type b, 22% in non-b isolates).

Early investigations established that resistance to chloramphenicol was almost invariably accom-

### Table II. Reduction in susceptibility to β-lactamase-stable agents and relationship to susceptibility to ampicillin in *H. influenzae*

<table>
<thead>
<tr>
<th>Category (n = number of isolates)</th>
<th>amoxicillin + clavulanic acid</th>
<th>cefaclor</th>
<th>cefixime</th>
<th>aztreonam</th>
<th>imipenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin-susceptible (n = 2201)</td>
<td>0.2</td>
<td>1</td>
<td>12</td>
<td>2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Ampicillin-resistant, β-lactamase-positive (n = 157)</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>β-Lactamase-negative, <em>β</em></td>
<td>37</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>β-Lactamase-negative, ampicillin MIC &gt; 4 mg/L (n = 38)</td>
<td>87</td>
<td>58</td>
<td>74</td>
<td>68</td>
<td>8</td>
</tr>
</tbody>
</table>

*Reduced susceptibility to ampicillin as indicated by zone diameter < 20 mm to 2 μg ampicillin-containing disk.*
panied by tetracycline resistance and both R-
determinants were transferred by large plasmids of
mol. wt (10^6) 34-46 (van Klinger et al., 1977;
Roberts et al., 1980). Roberts et al. (1980, 1982)
determined that all chloramphenicol acetyltransfer-
ases (CATs) mediating resistance in *H. influenzae*
collected from many countries resembled the type-
II CATs of enterobacteria in their sensitivity to
inhibition by 5,5'-dithiobis-2-nitrobenzoate
(DTNB) but not all CAT-producing strains of *H.
influenzae* possess detectable extrachromosomal
DNA. The work of Mendelman et al. (1984a)
already described provided supportive evidence for
frequent chromosomal integration of the chloram-
phenicol R-determinant. Examination of 42 chlor-
amphenicol-resistant isolates collected during a
survey in the UK in 1986 established that, although
all of them produced a type II-like CAT constitu-
tively, only five had visually-detectable extrachro-
mosomal DNA as single plasmids (mol. wt 40 x
10^6), despite the application of three different
methods of plasmid extraction to eight isolates
(Powell and Livermore, 1988). Moreover, ethidium
bromide-curing of plasmids in two isolates origi-
nally found to contain extrachromosomal DNA did
not affect their original resistance patterns, suggest-
ing that chromosomal integration of the CAT genes
is a common phenomenon among UK isolates.

In 1985, Burns et al. described four non-capsulate
isolates of *H. influenzae* from blood and sputum
that did not produce CAT but required chloram-
phenicol concentrations of \( \geq 20 \text{ mg/L} \) for inhibi-
tion. A decreased rate of chloramphenicol uptake
by resistant isolates was demonstrated and, after
outer membrane-protein analyses, it was suggested
that marked reduction in one protein (mol. wt 40 x
10^3), shown to function as a porin by Vachon et al.
(1985), might correlate with chloramphenicol resis-
tance mediated by decreased permeability. Iso-
lates of this type have not been reported from the
UK and their prevalence is unknown.

**Tetracycline**

Tetracycline resistance remains at \(<3\%\) in the
UK (Powell et al., 1987). Although resistance to
tetracycline may occur without resistance to chlor-
amphenicol, a high prevalence is generally seen
only in those areas where the latter is high. Jahn et
al. (1979) found that production and carriage of
more than one copy on a plasmid of the transposon
encoding resistance to tetracycline followed expo-
sure to this antibiotic and correlated with a higher
MIC for both tetracycline and chloramphenicol.
The results of hybridisation studies indicated that
the transposon determining tetracycline resistance
served as a carrier for the CAT gene and in some
isolates the transposon for \( \beta \)-lactamase production
had become integrated in a similar fashion.

Marshall et al. (1984) reported that 35 of 40
isolates of *H. influenzae* examined showed transfer-
urable plasmid-mediated resistance to tetracycline.
Hybridisation occurred between a class-B tetracy-
cline-resistance determinant probe, generally found
on transposon Tn10, and all 35 isolates which could
transfer their resistance as well as two which
possessed a non-transferable R-determinant. In
contrast with the inducible resistance found in
other species carrying Tn10, these isolates of *H.
influenzae* showed only constitutive expression of
resistance. The same phenomenon has also been
observed in *H. parainfluenzae* carrying Tn10 (Levy
et al., 1984) and in which it was ascribed to lack of
an active repressor molecule.

The remaining three of the 40 isolates examined
possessed non-transferable tetracycline resistance
and failed to hybridise with any of the four probes
derived from other gram-negative organisms. Two
of these were also unusual in showing amplification
of resistance after incubation with increasing
concentrations of tetracycline. Hence, several
mechanisms may mediate resistance to tetracycline
in this species and studies already described have
suggested that there may be frequent integration of
the R-determinant in the chromosome.

**Anti-folate agents**

The prevalence of resistance to trimethoprim in
the UK reached 4.2% in 1986 (Powell et al., 1987).
Few international studies have reported on resist-
ance to trimethoprim not tested in combination
with sulphamethoxazole. Campos and Garcia-
Tornel (1987) found that 55% of 83 capsule and
capsule isolates from Spanish children were
resistant to five antimicrobial agents including
trimethoprim, indicating the presence of a major
problem. Prevalence figures, however, for resist-
ance to trimethoprim in combination with sulpham-
ethoxazole from other countries suggest that the
Spanish experience is most unusual (Doern et al.,
1988).

Kirven and Thornsberry (1978), using a micro-
dilution-broth technique for MIC determination,
reported that isolates were either killed at concen-
trations of trimethoprim near the MIC or were not
killed at any concentration tested. When trimetho-
prim was bactericidal, the combination of trimeth-
oprime and sulphamethoxazole (TMP-SMZ) was
also always bactericidal. They also noted a correla-
tion between in-vitro bactericidal activity of sulphamethoxazole and its previously documented efficacy in eliminating nasopharyngeal carriage of some of the type-b isolates studied. Yoget and Moxon (1982) reported that type-b isolates which were not killed on exposure to TMP-SMZ elaborated significantly more type-b polysaccharide material than organisms sensitive to killing. After removal of the polysaccharide by physical methods, isolates were more easily killed by TMP-SMZ but reverted to their original phenotype after growth which allowed re-accumulation of capsular material.

Although both co-trimoxazole and trimethoprim alone are still used for non-invasive *H. influenzae* infections, particularly in patients hypersensitive to ampicillin, little is known about the mechanisms of resistance to these agents in this species. Since resistance to other antimicrobials documented in *H. influenzae* is frequently mediated by mechanisms which have much in common with those found in the enterobacteria, it has been widely presumed that the anti-folate agents are no exception. However, de Groot et al. (1988) have recently examined 10 non-capsulate trimethoprim-resistant isolates, none of which contained visually detectable extrachromosomal DNA. A DNA probe constructed from a subclone of the trimethoprim R-determinant of one isolate hybridised with the chromosomal DNA of both trimethoprim-sensitive and -resistant *H. influenzae* but not with *Escherichia coli* containing genes coding for dihydrofolate reductases (DHFRs) 1, 2 and 3 or with trimethoprim-resistant strains of *Neisseria*. From an observation that DHFR activity was significantly higher in a trimethoprim-resistant strain than in an isogenic sensitive counterpart, it was suggested that resistance was associated with an overproduction of DHFR—a mechanism occasionally observed amongst enterobacteria (Steen and Skold, 1985). Further elucidation of these observations is awaited.

**Erythromycin**

Current prevalence of erythromycin resistance in the UK is unknown but with the NCCLS (National Committee for Clinical Laboratory Standards) breakpoint of 8 mg/L, a recent study in the USA reported that 50% of isolates were resistant (Doern et al., 1988) compared with only 6% of French isolates examined by Dabernat et al. in 1986. Machka et al. (1988) found a variation across Europe from 27% in the Netherlands to 1% in both Austria and the UK.

Fernandes et al. (1987) reported that, with 0.5 mg/L and 8 mg/L as susceptible and resistant breakpoints, respectively, in-vitro MIC values correlated well with successful treatment of septicaemia in a mouse model but only when certain media were used and plates were incubated in air. It is clear that the extrapolation of in-vitro susceptibility to the likely clinical efficacy of erythromycin against *H. influenzae* is not straightforward and the usefulness of erythromycin is somewhat dubious.

**Rifampicin**

Opinion remains divided as to the role of rifampicin in prophylaxis against type-b infections among close contacts of an index case (Granoff et al., 1979; Eskola et al., 1987). Nicolle et al. (1982) documented a high prevalence of rifampicin-resistant non-capsulate *H. influenzae* isolated from subjects after prophylaxis and suggested that their failure to find similar type-b isolates was due solely to the overall low prevalence of these strains in their specimens. Doern et al. (1988) found that 1% of USA isolates were resistant to rifampicin and Campos and Garcia-Tornel (1987) identified only one such isolate amongst 83 isolates resistant to ampicillin and chloramphenicol. A high frequency of mutation in-vitro to rifampicin resistance was reported among type-b isolates by Mendelman et al. (1982) who suggested that the variable degree of resistance observed might indicate that more than one mechanism was involved.

**4-Quinolones**

The 4-quinolones will undoubtedly be used increasingly for both invasive and non-invasive *H. influenzae* infections and may be of particular use in areas where multi-resistance is a problem. Ciprofloxacin appears to be highly active in-vitro and effective in respiratory infections where *H. influenzae* is the predominant organism in the sputum (Raoof et al., 1986). Resistance to 4-quinolones is not a problem at present.

**Multi-resistant isolates**

Type-b and non-capsulate isolates of *H. influenzae* resistant to four or more antimicrobial agents have been reported from many countries but are generally uncommon (0-6% of isolates in the UK survey in 1986). Where multiply-resistant type-b isolates are a local problem, they do not appear to constitute a single clone. The Spanish isolates studied by Campos et al. (1987) collected from index cases of
meningitis and carriers in four day-care centres during 1985, varied in OMP and plasmid restriction-endonuclease profiles.

Prospects

Despite the existence of resistance problems, a considerable choice of antimicrobial agents is still available for treatment of the majority of invasive and non-invasive *Haemophilus influenzae* infections. Nevertheless, a vaccine which would effectively prevent invasive disease by type-b strains in the age group most at risk (<18 months) would circumvent many therapeutic problems arising from antimicrobial resistance amongst type-b isolates (Granoff and Munson, 1986). Meanwhile, the expanding range of orally administered compounds, will facilitate treatment of non-invasive infections caused by type-b and non-capsulate isolates of *H. influenzae* and some of the newer injectable compounds will probably prove to be of particular value for serious infections caused by isolates resistant to many of the previously available antimicrobial agents.

REFERENCES


Medeiros A A, O'Brien T F 1975 Ampicillin-resistant *Haemophilus influenzae* type b possessing a TEM-type beta-lactamase


Medeiros A A, O'Brien T F 1975 Ampicillin-resistant *Haemophilus influenzae* type b possessing a TEM-type beta-lactamase


