SHORT ARTICLE

Variations in the virulence, for pregnant guinea pigs, of campylobacters isolated from man

C. R. COID, A. M. O’SULLIVAN and C. J. DORÉ*

Divisions of Comparative Medicine and *Medical Statistics, Clinical Research Centre, Harrow, HA1 3UJ

Summary. Pregnant guinea pigs were used to compare the virulence of four human isolates of Campylobacter fetus ss. fetus and four of C. jejuni on the basis of their ability to cause abortion and bacteraemia. Of the four strains of C. fetus ss. fetus two produced abortion readily after intramuscular injection. The four C. jejuni isolates were, however, of comparatively low virulence and no differences between them were demonstrated. Some of the isolates differed in their ability to survive in vitro in human and guinea-pig serum. It is suggested that campylobacters vary in their virulence for man and that this may influence the outcome of infections. Guinea pigs may prove useful in studying the pathogenesis of systemic campylobacter infections.

Introduction

Infections caused by organisms of the genus Campylobacter are associated with various clinical abnormalities, principally acute enterocolitis, but occasionally meningitis, abortion, arthritis, endocarditis and other systemic infections (Skirrow, 1984). Infertility and abortion are the main features of the infections in ruminant animals.

In determining the virulence of micro-organisms isolated from man there is usually no alternative to the use of laboratory animals. Few animal models are available for the study of campylobacters. Newell et al. (1985) showed, however, that isolates associated with diarrhoea in man differed from those isolated from water in their ability to colonise the intestines of infant mice and in their cytoxic activity for HeLa cells. Moreover, abortion in pregnant guinea pigs has been used as an indicator of the pathogenicity of campylobacters from various sources (Sultan Dosa et al., 1983; Taylor and Bryner, 1984).

For the study reported here, pregnant guinea pigs were used to compare the virulence of four strains of Campylobacter fetus ss. fetus (Véron and Chatelain, 1973; referred to hereafter as C. fetus) and four of C. jejuni isolated from human patients.

Materials and methods

Guinea pigs

Guinea pigs, aged 12–15 weeks, of the Dunkin-Hartley strain were used during their sixth week (range 42–49 days) of pregnancy. The campylobacters were injected intramuscularly or intraperitoneally or were administered orally by means of a syringe without a needle.

Received 24 Apr. 1986; accepted 2 Jun. 1986.
homogenised in brucella broth and the blood-agar plates incubated in a microaerophilic environment for 48 h. Bacteraemia was detected by plating blood from an ear vein on blood agar by means of a 0.01 ml loop (Gibco).

Serum

Pooled human serum was prepared from the blood of three healthy volunteers. Complement, as assayed by lysis of antibody-sensitised erythrocytes, was within the normal limits. Pooled guinea-pig serum was prepared from three pregnant animals, which were deeply anaesthetised (Sagatal; May and Baker Ltd) before exsanguination.

Serum inactivation of campylobacters

The susceptibility of each isolate to the bactericidal activity of human and guinea-pig serum was determined as described by Johnson et al. (1978). The incubation period was 1 h.

Statistical methods

Fisher's exact test was used.

Results

Abortion and bacteraemia in infected guinea-pigs

The table gives the results of two experiments, one in which pregnant guinea pigs received 10^9 cfu by the oral, intramuscular or intraperitoneal route, and the other in which 10^5 cfu were given intraperitoneally.

In the animals inoculated intramuscularly, the abortifacient activity of *C. fetus* strain 23907 was significantly greater than that of strains 3329 ($p=0.008$) and 613 ($p=0.01$) but similar to that of strain 25320. This finding was supported by the results in animals given 10^5 cfu intraperitoneally. Bacteraemia was detected at 24 h in a greater number of animals given intramuscular inocula of three *C. fetus* strains than in those given *C. fetus* strain 613.

Campylobacter species, strain, and origin	Abortion (A) and bacteraemia (B) in groups of animals given							
	10^9 cfu orally	10^5 cfu intramuscularly	10^5 cfu intraperitoneally	10^9 cfu intraperitoneally				
	A	B	A	B	A	B	A	B
C. fetus								
25320 Blood	0/4*	3/4	5/9	6/7	3/3	2/2	ND	ND
23907 Ovarian abscess 3329 Blood 613 Wound	0/3	0/3	9/12	8/12	3/3	2/3	ND	ND
0/3	0/3	1/9	5/8	0/3	1/3	0/4	0/4	
0/3	0/3	2/12	1/12	0/3	0/3	0/4	0/3	
C. jejuni								
42734 Faeces 43353 Faeces 39175 Faeces 40630 Faeces	0/3	0/3	1/9*	1/9	2/3	0/3	ND	ND
0/3	0/3	1/9*	1/9	2/3	0/3	ND	ND	
0/3	0/3	0/9*	0/9	0/3	0/3	2/3	1/3	
0/3*	0/3	0/9	1/9	0/3	1/3	1/3	1/3	

ND = Not done.

*= One animal died in these groups.

† = Campylobacters not isolated from any tissues.
or the four C. jejuni isolates. No difference between the four C. jejuni isolates was demonstrated in terms of the abortions produced by parenteral inoculation.

After the oral administration of the eight isolates, no abortions occurred, but bacteraemia was detected at 24 h in guinea pigs given C. fetus strain 25320. In a subsequent experiment (not shown in the table), 5 x 10^6 cfu of strain 25320 given orally produced abortion in two of three guinea pigs, and one of three animals given the same dose of C. fetus strain 23907 also aborted; in none of these animals was bacteraemia detected.

Bacteriological examination of guinea-pig tissues

Evidence that certain strains of C. fetus multiply profusely in guinea-pig tissues was shown by isolate 25320. Thus, one placenta from a guinea pig that aborted three conceptuses after intramuscular inoculation (10^6 cfu) contained 1.5 x 10^9 cfu. Moreover, one of three placentas from a guinea pig that aborted after intraperitoneal inoculation (10^6 cfu) contained 7.2 x 10^7 cfu. Similarly, one of two aborted placentas from a guinea pig given C. jejuni strain 42734 (10^5 cfu) by intraperitoneal inoculation contained 8.9 x 10^7 cfu.

At the end of each experiment, the liver, spleen, kidneys and gallbladder of each animal were examined for campylobacters but the numbers present were usually fewer than 10^3 cfu/organ. Infection of the fetus, as determined by examination of the liver, spleen and fetal stomach contents, was not a regular occurrence even when the corresponding placenta was infected.

Survival of campylobacters in serum

Human and guinea-pig serum gave similar results. C. fetus strains 25320 and 23907 and C. jejuni strain 42734 showed a survival rate in excess of 95%. Survival of < 1% was shown, however, by C. fetus strains 613 and 3329 and C. jejuni strains 39175, 43353 and 40630.

Discussion

In an analysis of non-intestinal (systemic) human infections with campylobacters, Rettig (1979) observed that most patients had pre-existing debilitating disorders. Little evidence is available, however, of variations in the virulence of campylobacters that might influence the course of infections in man. The experiments described here demonstrate that different isolates of C. fetus from human patients can vary significantly in their virulence for guinea pigs as determined by their abortifacient activity and ability to cause bacteraemia. Virulence for experimental animals may or may not truly reflect virulence for man. No differences in virulence for guinea pigs could be demonstrated in four C. jejuni isolates. Both C. fetus and C. jejuni showed striking strain variations in susceptibility to the bactericidal effect of serum. The observations on C. jejuni are similar to those reported by Blaser et al. (1985). However, C. fetus strains used in the experiments by these workers were found to be highly serum resistant, whereas two out of four strains used in our experiments were readily killed by both human and guinea-pig serum.

Infection was established experimentally by the oral administration of two C. fetus strains. Presumably, therefore, adherence to and penetration of the gut wall, together with the ability to multiply in body tissues, are likely to play a significant role in the pathogenicity and virulence of campylobacters.

Previously, Sultan Dosa et al. (1983) demonstrated that, in pregnant guinea pigs, the virulence of campylobacters appeared to be related to their host origin. In this report, guinea pigs were shown also to be capable of demonstrating variations in the virulence of isolates from the same host. These animals seem likely to be useful in studying other aspects of the pathogenesis of campylobacter infections.

We wish to thank members of the Division of Immunological Medicine for performing the serum complement assays and Dr A.P. Johnson for helpful comments during the course of this work.

REFERENCES

