Relationship between lipopolysaccharide composition and virulence of *Haemophilus ducreyi*

J. A. ODUMERU, G. M. WISEMAN* and A. R. RONALD

Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E OW3, Canada

Summary. The relationship between lipopolysaccharide (LPS) composition and virulence of *Haemophilus ducreyi* strains was investigated. Glycoses identified in LPS by gas-liquid chromatography were glucose, galactose, and their amino derivatives glucosamine and galactosamine. Fucose was found in trace amounts but mannose and rhamnose, characteristic of the O-side chain of LPS in many species, were not detected. Qualitatively, the LPS composition of the eight strains examined was similar and differences were mainly quantitative. The total glucose:KDO ratio of the LPS of virulent strains exceeded that of avirulent strains. All strains had similar fatty-acid composition but lacked lauric acid. SDS-polyacrylamide gel electrophoresis of the LPS of virulent and avirulent strains also revealed differences in their electrophoretic mobilities. The LPS profiles of avirulent strains were similar, but differed from those of virulent strains. These profiles lacked high mol. wt bands representing O-side chain repeating units. Thus, differences in the electrophoretic mobilities of the LPS of virulent and avirulent strains may reflect differences in the amount of carbohydrates associated with the core polysaccharide.

Introduction

Lipopolysaccharide (LPS) is a major component of the outer membrane of gram-negative bacteria. Structurally, it consists of three parts: lipid A, core polysaccharide and O-antigenic side chains. The O-antigenic side chains are found in smooth LPS, whereas rough LPS may contain lipid A and varying amounts of the core polysaccharide or lipid A and 2-keto-3-deoxy-octulosonic acid (KDO) only, as in the case of deep rough mutants (Luderitz et al., 1971). The presence of O-antigenic side chains in the LPS of smooth strains of *Salmonella* spp. (Nelson and Roantree, 1967; Rowley, 1968; Olling, 1977), *Escherichia coli* (Mushel and Larsen, 1970; Taylor, 1975), and *Shigella* spp. (Reed and Albright, 1974) and the composition of the core polysaccharide of *E. coli* (Medearis et al., 1968) and the LPS of *Neisseria gonorrhoeae* (Guymon et al., 1982) have been associated with serum resistance and virulence.

In a previous study (Odumeru et al., 1984), virulence of *Haemophilus ducreyi* was associated with resistance both to the bactericidal action of human serum and to phagocytosis and killing by human polymorphonuclear leukocytes. The bactericidal effect of human serum was inhibited by the LPS of serum-sensitive strains but not by the LPS of serum-resistant strains (Odumeru et al., 1985). The purpose of the present study was to determine whether there is a relationship between the chemical composition of the LPS of *H. ducreyi* strains and virulence and whether the gross chemical composition of *H. ducreyi* LPS resembled that of LPS from other gram-negative species.

Materials and methods

Bacterial strains and growth conditions

H. ducreyi strains used in this study were: reference strains A75, A77, and A76 (from the Pasteur Institute, Paris); strain 36-F-2 (from M. Kilian); strains 409, C148, 557, BG411 (from Kenya); strains 35000 and 78226 (from Winnipeg); and strain CH39 (from Thailand). Serum-resistant strain A77* was obtained by passage of strain A77 in the presence of increasing concentrations of pooled normal human serum until a 70% survival rate in 50% serum was reached.

The strains were kept as frozen-milk stock cultures at −70°C. Before use, they were cultured on haemoglobin agar composed of gonococcal medium base and 1% Isovitalex and incubated at 35°C with CO₂ 5% and high humidity for 24 h. All media were obtained from Gibco.
LPS isolation

The LPS of \textit{H. ducreyi} strains was isolated by the rapid isolation micromethod described by Inzana (1983), and also from 18 g (wet weight) of stationary phase cells by the hot phenol-water procedure of Westphal and Jann (1965). All LPS preparations were lyophilised and stored at 4°C. The LPS of non-piliated \textit{N. gonorrhoeae} P-6472 was supplied by Dr G. M. Wiseman. LPS of \textit{E. coli} 0111B4 was obtained from Difco Laboratories, Detroit, MI, USA.

Preparation of lipid A from LPS

Lipid A was prepared as described by Stead \textit{et al.} (1975). About 30 mg of LPS was hydrolysed with 5 ml of 0.18 M acetic acid at 100°C for 2 h in a sealed ampoule. The precipitated lipid A was removed by centrifugation, washed with 0.18 M acetic acid, lyophilised and weighed.

Fatty acid analysis

Fatty acid methyl esters were prepared as described by Jennings \textit{et al.} (1973). Lyophilised lipid A was dissolved in chloroform, reprecipitated in acetone (1 part lipid: 3 parts acetone), and refluxed in methanolic HCl (5 parts methanol: 1 part HCl) for 8 h. The methyl esters were extracted with ethyl ether-petroleum ether (1:1), concentrated, and analysed by gas-liquid chromatography (GLC) on a stainless-steel column (0.65 × 180 cm) prepacked with 10% SE30 on 100–120-mesh Gas-Chrom Q at a temperature programme over the range 150–250°C and rising at 2°C/min. The detector temperature was 250°C.

Aminoglycoses were determined by GLC, as described by Laine \textit{et al.} (1972).

SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

The LPS preparations from \textit{H. ducreyi} strains were analysed by SDS-PAGE with the discontinuous gel system described by Laemmli (1970). The gel was 15% polyacrylamide and contained 4 M urea. In the electrophoretic analysis of LPS preparations, 2 µg of purified LPS was loaded on to the gel and electrophoresed at 20 mA (constant current) per slab. After electrophoresis, the LPS bands were visualised by the silver staining method of Tsai and Frasch (1982). The electrophoretic mobility and profiles of LPS isolated by the methods of Inzana (1983) and Westphal and Jann (1965), were similar.

Infra-red spectrophotometry

Infra-red (IR) spectra of the LPS preparations were obtained with the assistance of the Chemistry Department, University of Manitoba. Lyophilised, dried LPS was ground with Nujol (mineral-oil), placed in cells and scanned.
Results

Chemical analysis of LPS

The chemical composition of the LPS preparations from virulent strains of *H. ducreyi* was compared with that of avirulent strains. The LPS of *E. coli* 0111B4 and *N. gonorrhoeae* P-6274 were included for comparison. Qualitatively, the major components of all LPS preparations were similar (table I). These LPS preparations were characterised by a nucleic acid content of <1% and a protein content of ≤2%. The total carbohydrate, hexose, and NANA contents of virulent strains were relatively higher than those of the avirulent strains. In contrast, the lipid A content was higher in avirulent strains. Other LPS components varied between strains and there was no correlation between the amount and virulence.

The concentration of the components of the LPS of *E. coli* O111B4 was much higher than those of *H. ducreyi* strains and *N. gonorrhoeae* P-6472, except lipid A, NANA and phosphate concentrations which were lower than those of *H. ducreyi*.

The KDO content of the LPS of *H. ducreyi* strains and *N. gonorrhoeae* P-6472 was <1% when LPS was hydrolysed with 0.2 N H2SO4 (table I). Hydrolysis of LPS with 4 N HCl released KDO from the LPS in amounts similar to that released from *E. coli* 0111B4. The amount of KDO released from *N. gonorrhoeae* LPS by 4 N HCl was substantially higher than that from *E. coli* and *H. ducreyi*.

Identification of glycoses

Hexoses and hexosamines identified in the LPS of *H. ducreyi* strains by GLC were glucose, galactose, glucosamine and galactosamine (table III). Ribose in the concentration range 0.01–0.2 nmol/µg of LPS was present. Fucose was present in trace amounts but mannose and rhamnose were not detected. Rhamnose was also absent from LPS of *N. gonorrhoeae* P-6472 but these sugars were identified in *E. coli* 0111B4. The total hexose:hexosamine concentration of the LPS of virulent strains 35000, 409, C148, and A77* exceeded that of avirulent strains A76, 36-F-2, A77, and A75.

Total glycos:KDO ratios for virulent strains were also higher than those of avirulent strains (table II). This ratio for nonpiliated *N. gonorrhoeae* P-6472 was in the same range as those of the avirulent *H. ducreyi* strains.

Identification of fatty acids

C14, C16, C18, and C20 fatty acids were identified by GLC in the lipid A moiety of *H. ducreyi*.
Table II. KDO content of LPS preparations from *H. ducreyi*, *E. coli* and *N. gonorrhoeae*

<table>
<thead>
<tr>
<th>Strain</th>
<th>Karkhanis Method*</th>
<th>Brade Method†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KDO %</td>
<td>Ratio KDO:Glycose</td>
</tr>
<tr>
<td>H. ducreyi (virulent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35000</td>
<td>0.7‡</td>
<td>2.8</td>
</tr>
<tr>
<td>409</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>C148</td>
<td>0.4</td>
<td>3.5</td>
</tr>
<tr>
<td>A77*</td>
<td>0.7</td>
<td>3.1</td>
</tr>
<tr>
<td>(avirulent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A77</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>A75</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>36-F-2</td>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>A76</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>E. coli 0111B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111B4</td>
<td>3.4</td>
<td>0.9</td>
</tr>
<tr>
<td>N. gonorrhoeae P-6472</td>
<td>0.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

KDO = 2-Keto-3-deoxyoctulosonic acid.
* KDO released by 0.2 N H$_2$SO$_4$ (Karkhanis et al., 1978).
† KDO released by 4 N HCl (Brade et al., 1983).
‡ Each figure represents the mean of three separate determinations.

Table III. Monosaccharide content of the LPS from *H. ducreyi*, *N. gonorrhoeae* and *E. coli*

<table>
<thead>
<tr>
<th>Strain</th>
<th>Glycose concentration* (nmol/µg of LPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glucose</td>
</tr>
<tr>
<td>H. ducreyi (virulent)</td>
<td></td>
</tr>
<tr>
<td>C148</td>
<td>0.41</td>
</tr>
<tr>
<td>409</td>
<td>0.81</td>
</tr>
<tr>
<td>35000</td>
<td>0.71</td>
</tr>
<tr>
<td>A77*</td>
<td>0.79</td>
</tr>
<tr>
<td>(avirulent)</td>
<td></td>
</tr>
<tr>
<td>A77</td>
<td>0.27</td>
</tr>
<tr>
<td>A75</td>
<td>0.48</td>
</tr>
<tr>
<td>A76</td>
<td>0.34</td>
</tr>
<tr>
<td>36-F-2</td>
<td>0.40</td>
</tr>
<tr>
<td>N. gonorrhoeae P-6472</td>
<td>0.64</td>
</tr>
<tr>
<td>E. coli O111B4</td>
<td>1.10</td>
</tr>
</tbody>
</table>

* Determined by GLC as TMS derivatives.
LIPOPOLYSACCHARIDE AND VIRULENCE OF H. DUCREYI

Table IV. Lipid A fatty acid content of H. ducreyi and E. coli 0111B4

<table>
<thead>
<tr>
<th>Strain</th>
<th>C12</th>
<th>C14</th>
<th>C16</th>
<th>C18</th>
<th>C20</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. ducreyi 409</td>
<td>0.61†</td>
<td>0.06†</td>
<td>0.10</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>35000</td>
<td>0.65</td>
<td>0.04</td>
<td>0.12</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>A77*</td>
<td>0.72</td>
<td>0.03</td>
<td>0.14</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>A77</td>
<td>0.68</td>
<td>0.04</td>
<td>0.10</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>A75</td>
<td>0.70</td>
<td>0.04</td>
<td>0.14</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>36-F-2</td>
<td>0.75</td>
<td>0.06</td>
<td>0.16</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>A76</td>
<td>0.61</td>
<td>0.04</td>
<td>0.16</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>E. coli 111B4</td>
<td>0.17</td>
<td>0.58</td>
<td>0.22</td>
<td>0.09</td>
<td>0.05</td>
</tr>
</tbody>
</table>

† Values represent the fatty acid concentrations (nmol/µg lipid A), as determined by GLC.

strains (table IV). C12 (lauric) acid, was identified in E. coli, but was absent in H. ducreyi strains. OH-substituted C14 (β-hydroxymyristic) acid was identified tentatively in E. coli and H. ducreyi, based on the relative retention time of this acid. However, no standard was available at the time of analysis to confirm the identification.

Quantitatively, there was little difference in fatty acid content between virulent and avirulent H. ducreyi. It has been suggested (Rietschel et al., 1984) that C18 and C20 acids in E. coli 0111B4 commercial LPS preparations are phospholipid contaminants, but this cannot be ascertained with certainty for the H. ducreyi strains.

SDS-Page of LPS

The electrophoretic profiles of the LPS of virulent and avirulent H. ducreyi are shown in fig. 1. Patterns of the avirulent strains (lanes A–D) appeared similar to each other but differed from the patterns of the virulent strains (lanes E–K). The LPS profile of serum-resistant isogenic strain A77* in lane E differed from that of serum-sensitive parent strain A77 in lane D. The isogenic strain was virulent in the rabbit model, whereas the parent strain was avirulent.

The LPS profiles of all H. ducreyi strains examined lacked the high mol. wt subunits present in the LPS of E. coli (lane I) (fig. 2). Such bands apparently represent the O-side chains of smooth LPS (Jann et al., 1975).

Fig. 1. Electrophoretic profiles of the LPS of H. ducreyi. Avirulent strains: lanes A, 36-F-2; B, A76; C, A75; D, A77. Virulent strains: lanes E, A77*; F, 35000; G, 557; H, CH39; I, BG411; J, 409; K, 78226.
Infra-red spectra

The IR spectra of the LPS of *H. ducreyi* A76, 35000, 409, and A77* were identical and were similar to those of *E. coli* 0111B4 and *N. gonorrhoeae* P*−* 6274 (fig. 3). The spectra contained broad absorption peaks at 3350/cm attributed to hydroxyl radicals characteristic of carbohydrates. Absorption bands at 1650 and 1510 to 1550 were due to monosubstituted amide groups (−NH·CO·CH3). The presence of an ester carbonyl band at 1720/cm and the broad absorption in the range from 1000/cm to 12000/cm characterised the LPS preparation as containing fatty acid esters. IR scans of *H. ducreyi* LPS lacked the sharp absorption bands at 1275/cm and the fatty acid ester band at 1300/cm−1, which were present in the *E. coli* LPS scan.

Discussion

The gross chemical composition of the LPS of *H. ducreyi* strains was similar to that of other gram-negative bacteria, as indicated by IR spectra and chemical analysis. Although there were no qualitative differences in the LPS of virulent and avirulent *H. ducreyi* strains, the total glycose:KDO ratio of the LPS of virulent strains exceeded that of avirulent strains. Glycoses such as rhamnose and mannosé which are characteristic of the O-specific chains of the LPS of many gram-negative bacteria were not identified in *H. ducreyi*. Thus, differences appear to reside in the core polysaccharide. Virulent strains, in contrast to avirulent strains, have been shown previously (Odumeru et al., 1984) to be resistant to complement-mediated bactericidal action of human and rabbit serum. Strain C148 which has a lower glycose:KDO ratio (table II) than virulent strains 35000, 409, and A77 was less resistant to the bactericidal action of serum than these strains (Odumeru et al., 1984). Strains A77, A74, and A76 which had the lowest glycose: KDO ratios, were susceptible to the bactericidal action of serum (Odumeru et al., 1984). Thus, differences in the serum-sensitivity of strains may be associated with the amount of carbohydrate present in the core region of the LPS.

The KDO content of *H. ducreyi* and *N. gonorrhoeae* P*−* 6472 was low (<1%), compared with that of *E. coli* 0111B4 (3−5%), when 0.2N H2SO4 was used in hydrolysis. Low KDO content has been reported for *H. influenzae* types a−f (Zoon and Scocca, 1975; Flesher and Insel, 1978). However, Parr and Bryan (1984) detected KDO in three strains of *H. influenzae* at levels similar to that in a strain of *S. typhimurium* (c. 3%), by hydrolysing LPS with 4 N HCl, as described previously by Brade et al. (1983). Hydrolysis of *H. ducreyi* LPS with 4 N HCl yielded more TBA-reactive material producing KDO levels similar to that of *E. coli* 0111B4. This procedure frees C−4 and C−5 substituted KDO from LPS (Brade et al., 1983), indicating that KDO in *H. ducreyi* is highly substituted. The same is true of *N.
LIPOPOLYSACCHARIDE AND VIRULENCE OF *H. DUCREYI*

Fig. 3. Infra-red spectra of the lipopolysaccharides of *H. ducreyi* strains: A77* (A), A76 (B), 35000 (C), 409 (D); *N. gonorrhoeae* P-6472 (E); and *E. coli* O111B4 (F).

gonorrhoeae P-6472 LPS, in which KDO at levels higher than *E. coli* and *H. ducreyi* was detected after strong acid hydrolysis.

SDS-PAGE analysis of LPS revealed differences in the electrophoretic profiles of virulent and avirulent strains. The profiles of avirulent strains were similar, but differed from those of virulent strains as exemplified by serum-resistant isogenic strain A77* which is virulent, and serum-sensitive parent strain A77 which is avirulent in the rabbit model. *H. ducreyi* strains contained LPS of low mol. wt, suggesting that the O-side chains typical of smooth LPS of *E. coli*, *Salmonella* spp., and *Shigella* spp. (Luderitz *et al.*, 1971; Jann *et al.*, 1975) are not present in these strains. These observations support the chemical data that glycoses characteristic of O-side chain LPS such as mannose and rhamnose were not detected. However, the non-piliated *N. gonorrhoeae* 6472 contained a trace amount of mannose. Thus, differences in mobility of the LPS of virulent and avirulent strains may reflect differences in the amount of carbohydrates associated with the core polysaccharide. Other gram-negative bacteria such as *N. meningitidis*, *N. gonorrhoeae*, *Bordetella pertussis*, *H. influenzae*, and also *Chlamydia* spp. have a "rough type" LPS (Tsai and Frasch, 1982; Inzana, 1983; Caldwell and Hitchcock, 1984; Logan and Trust, 1984; Peppler, 1984), indicating that "smooth" type LPS is not a prerequisite for virulence of these organisms.

We acknowledge the advice of Drs G. H. Bowden and E. T. Pritchard of the Department of Oral Biology, in regard to GLC analysis of LPS.

This research was supported by a Medical Research Council of Canada grant to Dr A. R. Ronald. One of us (J.A.O.) is the recipient of a Manitoba Health Research Council Studentship.
REFERENCES

