Comparison of direct plating with the use of enrichment culture for isolation of
Aeromonas spp. from faeces

JENNIFER ROBINSON, JANNICE BEAMAN, LINDA WAGENER and VALERIE BURKE

Gastroenterology and Nutrition Research Unit, Princess Margaret Children's Medical Research Foundation, Princess Margaret Hospital, GPO Box D184, Perth, Western Australia, 6001

Summary. Direct plating of faecal specimens on blood agar was compared with the use of enrichment culture for isolation of *Aeromonas* spp. from faeces during a large epidemiological study. Of enterotoxigenic strains isolated by direct plating, 89% were associated with acute diarrhoea and 7% with an episode of diarrhoea during the month before collection, but 79% of enterotoxigenic strains isolated only after enrichment were not associated with acute diarrhoea. With *Aeromonas* spp., as with intestinal pathogens, it appears that enrichment allows isolation of the bacteria when in low faecal concentrations likely to be found in convalescent patients, carriers and those with subclinical infection. The routine use of enrichment for isolation of faecal aeromonads, by detecting *Aeromonas* spp. in low numbers in patients without diarrhoea, is likely to confuse interpretation of epidemiological studies seeking to clarify the relationship between *Aeromonas* spp. and acute diarrhoea.

Introduction

With increased interest in *Aeromonas* spp. as potential intestinal pathogens, various media for their isolation from faeces have been described (Rogol et al., 1979; Shread et al., 1981; Moulsdale, 1983; Von Graevenitz and Bucher, 1983; Millership and Chattopadhyay, 1984; Robinson et al., 1984). Enrichment culture of specimens in alkaline peptone water has been recommended (Shread et al., 1981; Moulsdale, 1983; Von Graevenitz and Bucher, 1983; Millership and Chattopadhyay, 1984) and has been applied in clinical studies (Echeverria et al., 1981; Millership et al., 1983; Price et al., 1984).

Reluctance to accept *Aeromonas* spp. as intestinal pathogens comes, in part, from reports of a high rate of faecal carriage of aeromonads in asymptomatic individuals (Pitarangsi et al., 1982). Failure to observe an association between isolation of faecal aeromonads and diarrhoea is more likely when very sensitive methods are used for examination of stool specimens. Enrichment allows recovery of bacteria shed in low numbers; for example, enrichment enables the isolation of *Vibrio cholerae* from convalescent patients and from patients with subclinical infection as well as from carriers (Rennels et al., 1980). Thus, if enrichment were used routinely, many faecal isolates of *V. cholerae* would appear to be not associated with diarrhoea at the time of sampling.

Materials and methods

Faecal specimens

During a period of 6 weeks in late autumn and early winter, 1981, all faecal samples from patients with diarrhoea and from matched controls (Gracey et al., 1982) submitted to the Department of Microbiology, Princess Margaret Hospital, Perth, were cultured in parallel by direct plating and with enrichment.

In this epidemiological study, patients were considered to have diarrhoea if they had had at least three loose stools per day within the previous 2 days. Patients were regarded as having no diarrhoea if stools had been normal for 2 weeks before the faecal sample was collected.

Isolation media

Blood agar containing paranitrophenyl glycerine (PNPG) 43 μg/ml w/v was used as the medium for primary plating. Nutrient broth (Cowan, 1974) and alkaline peptone water (Furniss et al., 1978) were used for enrichment; they were held at room temperatures for 24 h and then plated on to the blood-agar PNPG medium.

Identification

Haemolytic and non-haemolytic colonies were tested
Table. Association between presence or absence of diarrhoea and method of isolation of Aeromonas spp.

<table>
<thead>
<tr>
<th>Method of isolation</th>
<th>Number of Aeromonas isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. sobria</td>
</tr>
<tr>
<td>Primary plating</td>
<td>D⁺ 3</td>
</tr>
<tr>
<td>Enrichment</td>
<td>7 28 2</td>
</tr>
</tbody>
</table>

D⁺ = from patient with diarrhoea; D⁻ = from subject with no diarrhoea
* Non enterotoxigenic strains

for oxidase production (Kovacs, 1956), and oxidase-positive colonies were further identified by subculture in the medium of Kaper et al. (1979). Aeromonas spp. were classified according to the methods of Popoff (1984) as A. sobria, A. hydrophila or A. caviae. Enterotoxigenic strains were identified by the suckling mouse test as described previously (Burke et al., 1981).

Results

During the 6 weeks of the study, 38 strains of Aeromonas spp. were isolated from primary plates and also after enrichment; 47 strains were isolated after enrichment but not from primary plates.

The table shows the number of strains and species of Aeromonas isolated by the two methods in relation to the presence of diarrhoea. Of the 43 enterotoxigenic strains isolated only after enrichment, 34 were not associated with diarrhoea. Only three of 28 enterotoxigenic Aeromonas spp. isolated on primary plating were not associated with diarrhoea at the time of sampling and two of these were from patients who had a history of diarrhoea within the preceding month. Nine patients from whom enterotoxigenic Aeromonas spp. were isolated only after enrichment had diarrhoea; six strains were isolated from patients with diarrhoea of more than 2 weeks’ duration. A shigella was isolated from one sample that also contained A. sobria.

Discussion

Rennels et al. (1980) compared isolation of V. cholerae by direct plating with isolation after enrichment and found that in 96% of acute diarrhoeal stools that contained V. cholerae, the organism was detected by direct plating. In contrast, vibrios were isolated by direct plating from only 66% of formed stools that were shown to contain V. cholerae by enrichment. Our experience suggests that there is a similar correlation between diarrhoea and the isolation of enterotoxigenic Aeromonas spp. by direct plating; 89% of strains isolated by direct plating were associated with acute diarrhoea and 7% with diarrhoea within the preceding month. Of the nine patients with diarrhoea from whom enterotoxigenic Aeromonas spp. were isolated only after enrichment, only two had acute diarrhoea not known to be associated with another intestinal pathogen; 79% of enterotoxigenic Aeromonas spp. isolated only after enrichment were not associated with diarrhoea within 2 weeks of collecting the faecal sample. We have found that Aeromonas spp. may continue to be excreted in low concentrations by convalescent patients 2 months after symptoms have disappeared.

The data suggest that, as with V. cholerae (Rennels et al., 1980), enrichment allows detection of faecal aeromonads present in low concentration that may be found in convalescent patients, carriers, and in cases of subclinical infection with no diarrhoea at the time of sampling. On this basis, we recommend that, as for V. cholerae (Gangarosa et al., 1968; Rennels et al., 1980), stools from patients with acute diarrhoea should be plated directly on media for the isolation of Aeromonas spp., without enrichment, but that enrichment should be considered for specimens from convalescent patients, possible carriers, and from those with mild or chronic diarrhoea. Alkaline peptone water or nutrient broth are satisfactory enrichment media for Aeromonas spp.

Epidemiological studies in which enrichment cultures are used but in which the results of Aeromonas spp. isolated only after enrichment are not separated from those isolated by direct plating, are likely to obscure any relationship between diarrhoeal disease and faecal Aeromonas spp.

This work was supported by the TVW Telethon Foundation.

REFERENCES

Echeverria P, Blacklow N R, Sanford, L B, Cukor G G 1981 Traveler’s diarrhea among American peace corps volun-
teers in rural Thailand. *Journal of Infectious Diseases* **143:**767–771.

