ICTV Virus Taxonomy Profile: Virgaviridae

Michael J. Adams, Scott Adkins, Claude Bragard, David Gilmer, Dawei Li, Stuart A. MacFarlane, Sek-Man Wong, Ulrich Melcher, Claudio Ratti, Ki Hyun Ryu and ICTV Report Consortium

Abstract

The family Virgaviridae is a family of plant viruses with rod-shaped virions, a ssRNA genome with a 3'-terminal tRNA-like structure and a replication protein typical of alpha-like viruses. Differences in the number of genome components, genome organization and the mode of transmission provide the basis for genus demarcation. Tobacco mosaic virus (genus Tobamovirus) was the first virus to be discovered (in 1886); it is present in high concentrations in infected plants, is extremely stable and has been extensively studied. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Virgaviridae, which is available at www.ictv.global/report/virgaviridae.

Table 1. Characteristics of the family Virgaviridae

<table>
<thead>
<tr>
<th>Typical member: tobacco mosaic virus variant 1 (V01408), species Tobacco mosaic virus, genus Tobamovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virion</td>
</tr>
<tr>
<td>Genome</td>
</tr>
<tr>
<td>Replication</td>
</tr>
<tr>
<td>Translation</td>
</tr>
<tr>
<td>Host Range</td>
</tr>
<tr>
<td>Taxonomy</td>
</tr>
</tbody>
</table>

VIRION

The non-enveloped, rod-shaped virus particles of members of the family Virgaviridae are helically constructed with a pitch of 2.3 to 2.5 nm and an axial canal (Table 1, Fig. 1). They are about 20 nm in diameter, with predominant lengths that depend upon the genus. In most viruses, the capsid comprises multiple copies of a single protein of about 17–24 kDa [1]. In viruses of the genera Furovirus and Pomovirus (all transmitted by plasmidiophorids), a larger minor capsid protein is also produced by translational read-through of the capsid protein-encoding gene stop codon and can be detected at the extremity of virus particles [2]. In at least some furoviruses, a further minor coat protein of 25 kDa is initiated from a CUG codon upstream of the canonical start codon [3].

Received 22 June 2017; Accepted 6 July 2017

Author affiliations: 1ICTV, Stevenage, Hertfordshire SG2 8BT, UK; 2USDA ARS USHRL, Fort Pierce, FL 34945, USA; 3Université Catholique de Louvain, Louvain-la-Neuve, Belgium; 4Institut de Biologie Moléculaire des Plantes, 67084 Strasbourg cedex, Strasbourg, France; 5State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing 100193, PR China; 6The James Hutton Institute, Dundee DD2 5DA, UK; 7Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; 8Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; 9Dipartimento di Scienze e Tecnologie Agroambientali, Università di Bologna, Bologna 40127, Italy; 10Department of Horticultural Science, Seoul Women’s University, Seoul, Republic of Korea.

*Correspondence: Michael J. Adams, mike.adams.ictv@gmail.com

Keywords: Virgaviridae; ICTV; taxonomy; tobacco mosaic virus.

Abbreviation: ICTV, International Committee on Taxonomy of Viruses.
GENOME

The positive-sense ssRNA genome has a 5' -cap (m7GpppG) and a 3' -terminal tRNA-like structure that accepts histidine (Tobamovirus), tyrosine (Hordeivirus) or valine (Furovirus, Pecluvirus, Pomovirus). The number of genome components depends upon the genus (Fig. 2). The largest ORF encodes a replication protein with conserved methyltransferase and helicase domains, an arrangement typical of alpha-like viruses. This protein is translated directly from the genomic RNA. In viruses of all genera except Hordeivirus, the RNA-dependent polymerase is expressed as the C-terminal part of this protein by readthrough of a leaky stop codon. All viruses encode cell-to-cell movement proteins which, depending on the genus, are either single proteins of the '30K'-type or a 'triple gene block'.

REPLICATION

Tobamovirus RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5' -terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA [4].

TAXONOMY

There are seven genera with distinct genome organisations (Fig. 2) and other features as follows:

- **Hordeivirus.** Pollen transmission.
- **Furovirus.** Transmitted to graminaceous plants by the plasmidiophorid Polymyxa graminis. Soil-borne wheat mosaic virus is the best-known member.
- **Tobamovirus.** Pollen and seed transmission. Barley stripe virus is the best known member.
- **Pecluvirus.** Transmitted by the plasmidiophorid Polymyxa graminis.
- **Pomovirus.** Transmitted by plasmidiophorids.
- **Tobamovirus.** No natural vector. This large genus includes tobacco mosaic virus, the first virus to be discovered and crystalized, and since widely studied [5, 6].
- **Tobravirus.** Nematode transmission. Tobacco rattle virus is the best-known member.

The only plant viruses with rod-shaped particles not included in the family are those classified in the genus Beny- virus, family Benyviridae. Benyviruses have polyadenylated RNAs and replication proteins only distantly related to those of viruses in the family Virgaviridae.

REFERENCES