Single-domain intrabodies against hepatitis C virus core inhibit viral propagation and core-induced NFκB activation

Ryosuke Suzuki,1† Kenji Saito,1,2† Mami Matsuda,1 Mitsuru Sato,3 Yumi Kanegae,4 Guoli Shi,5 Koichi Watashi,1 Hideki Aizaki,1 Joe Chiba,2 Izumu Saito,4 Takaji Wakita1 and Tetsuro Suzuki5

1Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
2Department of Biological Science and Technology, Tokyo University of Science, Chiba, Japan
3Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
4Laboratory of Molecular Genetics, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
5Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan

Hepatitis C virus (HCV) core plays a key role in viral particle formation and is involved in viral pathogenesis. Here, constructs for single-domain intrabodies consisting of variable regions derived from mouse mAbs against HCV core were established. Expressed single-domain intrabodies were shown to bind to HCV core, and inhibit the growth of cell culture-produced HCV derived from JFH-1 (genotype 2a) and a TH (genotype 1b)/JFH-1 chimera. Adenovirus vectors expressing intrabodies were also capable of reducing HCV propagation. Intrabody expression did not affect viral entry or genome replication of single-round infectious trans-complemented HCV particles. However, intrabody expression reduced intracellular and extracellular infectious titres in CD81-defective Huh7-25 cells transfected with the HCV genome, suggesting that these intrabodies impair HCV assembly. Furthermore, intrabody expression suppressed HCV core-induced NFκB promoter activity. These intrabodies may therefore serve as tools for elucidating the role of core in HCV pathogenesis.

INTRODUCTION

Over 160 million people worldwide are chronically infected with hepatitis C virus (HCV), and are at risk of developing chronic hepatitis, cirrhosis and hepatocellular carcinoma (Lavanchy, 2011). Currently, successful treatments for HCV infection include directly acting antivirals, as well as pegylated-IFN and ribavirin; however, therapeutic agents targeting HCV structural proteins remain unavailable. HCV core protein, whose amino acid sequence is highly conserved amongst different HCV strains, is involved in the formation of the HCV virion and has a number of regulatory functions, including modulation of signalling pathways, immunological responses, cellular and viral gene expression, cell transformation, apoptosis, and lipid metabolism (Lai & Ware, 2000; Ray & Ray, 2001). Intracellularly expressed antibody fragments (intrabodies) have been used to inhibit the function of various proteins. Single-chain variable fragments (scFv), composed of the heavy chain and the light chain variable regions (VH and VL), have been shown to bind to antigens, thereby regulating the target’s function, and have been shown to be applicable to life cycle regulation of several viruses (Corte-Real et al., 2005; Gal-Tanamy et al., 2010; Marasco et al., 1993; Yamamoto et al., 1999). The same binding activity was demonstrated for single variable-domain fragments consisting of either VH or VL alone (Sato et al., 2013; Tanaka et al., 2007). In this study, we constructed several single-domain intrabodies derived from the anti-core mouse mAb. These single-domain intrabodies were shown to bind to HCV core. Amongst these, expression of two

†These authors contributed equally to this work.

The GenBank/EMBL/DDBJ accession numbers for the sequences of the cDNAs encoding VH or VL possessing the N-terminal leader signal are: CA7-H, LC113943; CA7-L, LC113944; 2H9-H, LC113945; 2H9-L, LC113946; DA3-H, LC113947; DA3-L, LC113948; AA10-H, LC113949; AA10-L, LC113950; 2G3-H, LC113951; 2G3-L, LC113952.

Two supplementary figures are available with the online Supplementary Material.
Table 1. Summary of mouse hybridomas producing anti-HCV core mAbs used for preparation of intrabodies

<table>
<thead>
<tr>
<th>Clone</th>
<th>Epitope (aa)</th>
<th>Isotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA7</td>
<td>28–32</td>
<td>IgG1</td>
</tr>
<tr>
<td>2H9</td>
<td>29–36</td>
<td>IgG1</td>
</tr>
<tr>
<td>DA3</td>
<td>33–37</td>
<td>IgG2a</td>
</tr>
<tr>
<td>AA10</td>
<td>61–75</td>
<td>IgG1</td>
</tr>
<tr>
<td></td>
<td>115–123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>149–157</td>
<td></td>
</tr>
<tr>
<td>2G3</td>
<td>71–77</td>
<td>IgG1</td>
</tr>
</tbody>
</table>

Expression of intrabodies, and interaction between core and each intrabody was assessed (Fig. 1b, c). All but one of the intrabodies were co-immunoprecipitated with FLAG-core; the exception being CA7-L. The levels of precipitated protein differed amongst the different intrabodies, with CA7-H, 2H9-H, 2H9-L, AA10-H, 2G3-H and 2G3-L exhibiting high levels of core binding in cells.

In order to evaluate the effects of intrabodies on HCV production, Huh7.5.1 cells were co-transfected with the intrabody plasmid and an RNA polymerase I (Pol I)-driven HCV genome plasmid, pHJFH1am. The infectious viral titre of genotype 2a cell culture-produced HCV (HCVcc) was reduced by expression of 2H9-L, AA10-H and 2G3-L (Fig. 2a). Expression of 2H9-L and AA10-H also led to marked reduction in production of genotype 1b HCVcc, whereas expression of 2G3-L yielded moderate inhibition (Fig. 2b). It should be noted that co-transfection with both H and L chain-encoding plasmids (Fig. S2A) or scFv-encoding plasmid (Fig. S2B) showed no greater reduction in HCV production. Therefore, we used 2H9-L and AA10-H intrabodies in subsequent experiments. To improve the efficiency of transduction, adenoviruses expressing 2H9-L or AA10-H were created. Cells infected with the resulting adenoviruses were further infected with HCVcc and infectious titres in the supernatants were determined after 2 or 4 days of culture (Fig. 2c). As expected, HCV production was reduced by expression of 2H9-L and AA10-H, demonstrating the utility of anti-core intrabodies as an antiviral strategy.

In order to address the molecular mechanism(s) of intrabody-mediated inhibition of HCV propagation, we examined the effects of intrabodies on HCV entry and replication using trans-complemented HCV particles (HCVtcp) (Suzuki et al., 2012). HCVtcp were produced from cells harbouring subgenomic replicon RNA by trans-complementation of...
Infectious titres of HCVcc in supernatants were determined at 5 days post-infection (p.i.). (b) Infectious titres of HCVcc in the supernatants of cells transfected with each intrabody-encoding plasmid along with Pol I-driven HCV genome plasmid pHJFH1am. Infectious titres of HCVcc in the supernatants were determined at 6 days p.i. (c) Huh7.5.1 cells were infected with adenoviruses at m.o.i. 10, followed by HCVcc infection 24 h after adenoviral infection. Infectious titres of HCVcc in supernatants were determined at 2 and 4 days after HCV infection. All data are presented as mean ± SD. Statistical differences between controls (vector or mock) and each intrabody were evaluated by Student's t-test. *P<0.05, **P<0.001 versus control.

Fig. 2. Effects of intrabodies on the production of HCV. (a) Huh7.5.1 cells were transfected with each intrabody-encoding plasmid along with Pol I-driven HCV genome plasmid pHJFH1am. Infectious titres of HCVcc in the supernatants were determined at 5 days post-infection (p.i.). (b) Infectious titres of HCVcc in the supernatants of cells transfected with each intrabody-encoding plasmid in combination with a Pol I-driven HCV genome plasmid were determined at 6 days p.i. (c) Huh7.5.1 cells were infected with adenoviruses at m.o.i. 10, followed by HCVcc infection 24 h after adenoviral infection. Infectious titres of HCVcc in supernatants were determined at 2 and 4 days after HCV infection. All data are presented as mean ± SD. Statistical differences between controls (vector or mock) and each intrabody were evaluated by Student's t-test. *P<0.05, **P<0.001 versus control.

Viral structural proteins. HCVtcp are infectious, but support only single-round infection and are unable to spread from infected cells, as the packaged genome lacks structural protein genes, thereby allowing us to examine infectious viral entry without the influence of re-infection. Huh7.5.1 cells were infected with adenoviruses encoding intrabodies or DsRed red fluorescent protein and were then infected with HCVtcp generated using plasmids as shown in Fig. 3(a). Viral protein levels were not affected by expression of intrabodies (Fig. 3b), suggesting that neither 2H9-L nor AA10-H impacted HCV entry, uncoating of the viral genome or RNA replication. To investigate whether intrabodies inhibited the assembly or release of infectious particles, intrabody plasmids and a Pol I-driven HCV genome plasmid were co-transfected into CD81-negative Huh7-25 cells, which can produce infectious HCV upon introduction of the viral genome, but do not allow HCV infection (Akazawa et al., 2007). The viral core levels in the supernatant were reduced by expression of 2H9-L and AA10-H (Fig. 3c), suggesting that these intrabodies reduce production of HCV particles. In addition, we observed that both intra- and extracellular infectious viral titres were reduced by expression of 2H9-L or AA10-H (Fig. 3d). Thus, the antiviral effects of 2H9-L and AA10-H are most likely due to inhibition of the step(s) for infectious particle assembly.

In addition to its function in nucleocapsid formation, HCV core has been shown to affect a number of host cellular pathways, including NFkB signalling. NFkB signalling is involved in anti-apoptotic and pro-inflammatory pathways, as well as in cell proliferation, all of which are processes that can affect HCV-mediated pathogenesis (Mann et al., 2006; Marusawa et al., 1999; Yoshida et al., 2001; You et al., 1999). We therefore assessed the effects of anti-core intrabodies on core-induced NFkB activation. Expression of 2H9-L or AA10-H, but not that of CA7-H, resulted in significant attenuation in the NFkB activity induced by expression of FLAG-core derived from HCV of either genotype 1a, 2a or 3a (Fig. 4). Collectively, these results indicated that anti-core intrabodies not only block HCV production, but also interfere with the modulation of cellular gene expression induced by HCV core.

Although conventional whole antibodies recognize epitopes via the variable region of heavy and light chain complexes, heavy chain antibodies, which consist of two heavy chains and are observed in the Camelidae family and some cartilaginous fish, possess a single domain as the antigen-binding site (Greenberg et al., 1995; Hamers-Casterman et al., 1993). The variable regions of either heavy or light chain from mAbs have also been shown to bind to antigen (Sato et al., 2013; Tanaka et al., 2007). For therapeutic applications, single-domain antibodies may have advantages over conventional antibodies. The side-effects observed in the use of conventional antibodies are considered to result from target cross-linking due to the bivalent nature of these antibodies or to the presence of the Fc region (Harmsen & De Haard, 2007); such side-effects are
not expected to occur with single-domain antibodies. In addition, the comparatively low molecular mass of single-domain antibodies may lead to recognition of antigenic sites that are not normally recognized by conventional antibodies (Harmsen & De Haard, 2007). Our findings here show the potential of single-domain intrabodies against HCV core as an antiviral strategy. Technical development to optimize intrabody delivery in vivo is a prerequisite for this strategy. Use of recombinant viral vectors such as adeno-associated viruses is a possible future option (Zhang & Rabbitts, 2014) and related studies are currently being planned.

Although 2H9-L and AA10-H intrabodies inhibited infectious viral assembly steps rather than entry or genome replication, as shown in Fig. 3(d), the precise mechanism of action of the single-domain intrabodies that causes decreases in propagation of HCV remains unclear. It is possible that these intrabodies affect processes important for early steps in virion assembly, such as core–RNA binding, dimerization of core, localization of core with lipid droplets or the interaction between core and NS5A (Counihan et al., 2011; Masaki et al., 2008). Furthermore, as anti-core intrabodies interfere with NFkB signalling induced by HCV core, these intrabodies can be applied to dissect the mechanisms underlying the ability of core to regulate cellular gene expression.

Thus, single-domain intrabodies such as 2H9-L and AA10-H are potential inhibitors of HCV production and of signalling pathways activated by the virus. In addition to the possible therapeutic application of intrabodies, structural analyses of intrabody–core interfaces are expected to provide information useful for designing novel structure-based small-molecule inhibitors capable of blocking multiple functions of HCV core.
METHODS

Preparation of hybridomas. Female BALB/c mice were immunized intraperitoneally with purified recombinant HCV core protein expressed in Escherichia coli. Splenic lymphocytes were then fused with P3X63Ag8.653 mouse myeloma cells using 50 % polyethylene glycol. Hybrid cells were screened for antibody production by ELISA. Stable antibody-producing hybrids were cloned and established. All five hybridomas used in this study produced mouse mAbs that reacted to HCV core on immunoblot and immunofluorescence assay (K. Yasui, Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, personal communication).

Epitope mapping. In order to define the epitopes recognized by the mouse mAbs used in this study, a panel of overlapping peptides derived from HCV core was synthesized (Cambridge Research Biochemicals) and antibody reactivity to the peptides was analysed by indirect immunoassay.

Cells. Human embryonic kidney 293T cells and human hepatocellular carcinoma cell lines Huh-7, Huh7.5.1 and Huh7-25 cells were maintained in Dulbecco’s modified Eagle’s medium (Wako Pure Chemical Industries) containing non-essential amino acids, 100 U/ml penicillin and 100 μg streptomycin ml−1 and 10 % FBS. Cells were cultured at 37 °C in a 5 % CO2 incubator.

Plasmids. In order to generate intrabody expression plasmids, total RNA from hybridoma cells was reverse transcribed using a SMART RACE cDNA Amplification kit (Clontech), and cDNAs encoding VH or VL possessing the N-terminal leader signal sequence and the Myc-tag at the C terminus were amplified by PCR using appropriate primers. The resultant fragments were cloned into pCAGGS. Plasmids for expression of FLAG-tagged core derive from genotype 1a, 2a and 3a were described previously (Saeed et al., 2009). Pol I-driven HCV genome plasmid (genotype 2a) pHHJFH1am was described previously (Suzuki et al., 2012). Transfection with this plasmid yielded an unspliced full-length HCV RNA containing cell culture-adaptive mutations, resulting in efficient RNA replication within the cytoplasm and subsequent production of infectious virions. The cDNA coding core to the first transmembrane region of NS2 (33 aa) in pHHJFH1am was replaced with the corresponding sequence of THpa (Suzuki et al., 2012) and was used as the genotype 1b HCV genome plasmid. To examine the effects of HCV core on NFκB promoter activity, NFκB-inducible reporter plasmid (pNF-K-B-Luc; Clontech) containing the firefly luciferase (Fluc) gene driven by the NFκB binding element was used. As a control, a plasmid expressing Renilla luciferase (Rluc) driven by the herpes simplex virus thymidine kinase promoter (pRL-TK; Promega) was used.

Preparation of viruses. HCVtcp and HCVcc derived from the JFH-1 isolate (genotype 2a) having adaptive mutations in E2 (N417S), p7 (N765D) and NS2 (Q1012R) were generated as described previously (Suzuki et al., 2012). Recombinant adenoviruses derived from human adenovirus type 5 expressing intrabodies under the EF-1z promoter were generated as described previously (Fukuda et al., 2006). Briefly, intrabody fragments obtained from each expression plasmid by EcoRI digestion and subsequent Klenow treatment were inserted into the SwaI site of a cosmid vector. The resultant cosmid was digested with PacI and transfected into 293 cells to generate recombinant adenoviruses.

Quantification of HCV infectivity. In order to determine the titres of HCVcc, Huh7.5.1 cell monolayers prepared in multwell plates were incubated with dilutions of samples, and then replaced with media containing 10 % FBS and 0.8 % carboxymethyl cellulose. Following incubation for 72 h, monolayers were fixed and immunostained with rabbit polyclonal anti-NS5A antibody (Invitrogen), and stained foci were counted and used to calculate a titre of f.f.u. ml−1.

Immunoblotting. Cells were washed with PBS and incubated with lysis buffer (50 mM Tris/HCl, pH 7.4, 300 mM NaCl, 1 % Triton X-100). Lysates were sonicated for 10 min and added to the same volume of 2 × SDS-PAGE sample buffer. Protein samples were boiled for 10 min, separated by SDS-PAGE and then transferred to PVDF membranes (Merck Millipore). After blocking, membranes were probed with primary antibodies, followed by incubation with peroxidase-conjugated secondary antibody. Antigen–antibody complexes were visualized using an enhanced chemiluminescence detection system (Super Signal West Pico Chemiluminescent Substrate; Thermo Fisher Scientific), in accordance with the manufacturer’s protocols.

Immunoprecipitation. Transfected cells were washed with ice-cold PBS, and suspended in lysis buffer (20 mM Tris/HCl, pH 7.4, containing 135 mM NaCl, 1 % Triton X-100 and 10 % glycerol) supplemented with 50 mM NaF, 5 mM Na3VO4 and complete protease inhibitor cocktail, EDTA free (Roche). Cell lysates were sonicated for 10 min and then incubated for 30 min at 4 °C, followed by centrifugation at 14 000 g for 10 min. Supernatants were immunoprecipitated with anti-FLAG agarose beads (Sigma-Aldrich). Immunocomplexes were washed four times with lysis buffer. Proteins that bound to the beads were boiled with SDS sample buffer and were then subjected to SDS-PAGE.

Reagents and antibodies. For immunoblotting, anti-β-actin (AC-15; Sigma-Aldrich), anti-FLAG (M2; Sigma-Aldrich) and anti-core (2H9) mouse mAbs (Masaki et al., 2010) were used. Rabbit polyclonal antibodies against Myc were obtained from Santa Cruz Biotechnology. Anti-NS5B antibodies were rabbit polyclonal antibodies against synthetic peptides, as described elsewhere (Suzuki et al., 2012).

DNA transfection. Monolayers of 293T cells were transfected with plasmid DNA using FuGENE 6 transfection reagent (Promega) in accordance with the manufacturer’s instructions. Huh7-
Hub7.5.1 and Hub7-25 cells were transfected with plasmid DNA using TransIT LT1 transfection reagent (Mirus).

Quantification of HCV core antigen. Concentration of HCV core antigen in culture medium was measured using a Lumipulse Ortho HCV Ag kit (Ortho Clinical Diagnostics).

Luciferase assay. For quantification of NFκB reporter activity, Fluc and Rluc activities of the cells were determined using a dual-luciferase reporter assay system (Promega) in accordance with the manufacturer’s protocols.

ACKNOWLEDGEMENTS

We are grateful to Francis V. Chisari (Scripps Research Institute, La Jolla, CA, USA) for providing Huh-7 and Hub7.5.1 cells. We would also like to thank M. Sasaki for technical assistance, and T. Masaki and T. Kato for helpful discussions. This work was supported by Grants-in-Aid from the Ministry of Health, Labor, and Welfare and the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

REFERENCES

Akazawa, D., Date, T., Morikawa, K., Murayama, A., Miyamoto, M., Kaga, M., Barth, H., Baumert, T. F., Dubuisson, J. & Wakita, T. (2007). CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection. J Virol 81, 5036–5045.

