1887

Abstract

The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed ‘viroporins’ is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000201
2015-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2000.html?itemId=/content/journal/jgv/10.1099/vir.0.000201&mimeType=html&fmt=ahah

References

  1. Agirre A., Barco A., Carrasco L., Nieva J.L. 2002; Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441 [View Article][PubMed]
    [Google Scholar]
  2. Agirre A., Lorizate M., Nir S., Nieva J.L. 2008; Poliovirus 2b insertion into lipid monolayers and pore formation in vesicles modulated by anionic phospholipids. Biochim Biophys Acta 1778:2621–2626 [View Article][PubMed]
    [Google Scholar]
  3. Aldabe R., Barco A., Carrasco L. 1996; Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem 271:23134–23137 [View Article][PubMed]
    [Google Scholar]
  4. Anonymous 1969; Amantadine and influenza. Lancet 2:1055–1056[PubMed]
    [Google Scholar]
  5. Antoine A.F., Montpellier C., Cailliau K., Browaeys-Poly E., Vilain J.P., Dubuisson J. 2007; The alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol 215:37–48[PubMed] [CrossRef]
    [Google Scholar]
  6. Atkins E., Tatineni R., Li H., Gretch D., Harris M., Griffin S. 2014; The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences. Virology 448:117–124 [View Article][PubMed]
    [Google Scholar]
  7. Atoom A.M., Jones D.M., Russell R.S. 2013; Evidence suggesting that HCV p7 protects E2 glycoprotein from premature degradation during virus production. Virus Res 176:199–210 [View Article][PubMed]
    [Google Scholar]
  8. Aweya J.J., Mak T.M., Lim S.G., Tan Y.J. 2013; The p7 protein of the hepatitis C virus induces cell death differently from the influenza A virus viroporin M2. Virus Res 172:24–34 [View Article][PubMed]
    [Google Scholar]
  9. Baker L.M., Shock M.P., Iezzoni D.G. 1969; The therapeutic efficacy of Symmetrel (amantadine hydrochloride) in naturally occurring influenza A2 respiratoy illness. J Am Osteopath Assoc 68:1244–1250[PubMed]
    [Google Scholar]
  10. Balgi A.D., Wang J., Cheng D.Y., Ma C., Pfeifer T.A., Shimizu Y., Anderson H.J., Pinto L.H., Lamb R.A., other authors. 2013; Inhibitors of the influenza A virus M2 proton channel discovered using a high-throughput yeast growth restoration assay. PLoS One 8:e55271 [View Article][PubMed]
    [Google Scholar]
  11. Barco A., Carrasco L. 1995; A human virus protein, poliovirus protein 2BC, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces cerevisiae . EMBO J 14:3349–3364[PubMed]
    [Google Scholar]
  12. Bentham M.J., Foster T.L., McCormick C., Griffin S. 2013; Mutations in hepatitis C virus p7 reduce both the egress and infectivity of assembled particles via impaired proton channel function. J Gen Virol 94:2236–2248[PubMed] [CrossRef]
    [Google Scholar]
  13. Bolduan S., Votteler J., Lodermeyer V., Greiner T., Koppensteiner H., Schindler M., Thiel G., Schubert U. 2011; Ion channel activity of HIV-1 Vpu is dispensable for counteraction of CD317. Virology 416:75–85 [View Article][PubMed]
    [Google Scholar]
  14. Boson B., Granio O., Bartenschlager R., Cosset F.L. 2011; A concerted action of hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly. PLoS Pathog 7:e1002144 [View Article][PubMed]
    [Google Scholar]
  15. Bowman G.D., Nodelman I.M., Levy O., Lin S.L., Tian P., Zamb T.J., Udem S.A., Venkataraghavan B., Schutt C.E. 2000; Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J Mol Biol 304:861–871[PubMed] [CrossRef]
    [Google Scholar]
  16. Brohm C., Steinmann E., Friesland M., Lorenz I.C., Patel A., Penin F., Bartenschlager R., Pietschmann T. 2009; Characterization of determinants important for hepatitis C virus p7 function in morphogenesis by using trans-complementation. J Virol 83:11682–11693 [View Article][PubMed]
    [Google Scholar]
  17. Browne E.P., Bellamy A.R., Taylor J.A. 2000; Membrane-destabilizing activity of rotavirus NSP4 is mediated by a membrane-proximal amphipathic domain. J Gen Virol 81:1955–1959[PubMed] [CrossRef]
    [Google Scholar]
  18. Bukreyev A., Whitehead S.S., Murphy B.R., Collins P.L. 1997; Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol 71:8973–8982[PubMed]
    [Google Scholar]
  19. Cady S.D., Mishanina T.V., Hong M. 2009; Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. J Mol Biol 385:1127–1141[PubMed] [CrossRef]
    [Google Scholar]
  20. Cady S.D., Schmidt-Rohr K., Wang J., Soto C.S., Degrado W.F., Hong M. 2010; Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692 [View Article][PubMed]
    [Google Scholar]
  21. Campanella M., de Jong A.S., Lanke K.W., Melchers W.J., Willems P.H., Pinton P., Rizzuto R., van Kuppeveld F.J. 2004; The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem 279:18440–18450 [View Article][PubMed]
    [Google Scholar]
  22. Carrasco L. 1978; Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature 272:694–699 [View Article][PubMed]
    [Google Scholar]
  23. Carrère-Kremer S., Montpellier-Pala C., Cocquerel L., Wychowski C., Penin F., Dubuisson J. 2002; Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol 76:3720–3730[PubMed] [CrossRef]
    [Google Scholar]
  24. Carter S.D., Dent K.C., Atkins E., Foster T.L., Verow M., Gorny P., Harris M., Hiscox J.A., Ranson N.A., other authors. 2010; Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Lett 584:2786–2790[PubMed] [CrossRef]
    [Google Scholar]
  25. Catanese M.T., Uryu K., Kopp M., Edwards T.J., Andrus L., Rice W.J., Silvestry M., Kuhn R.J., Rice C.M. 2013; Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 110:9505–9510 [View Article][PubMed]
    [Google Scholar]
  26. Catteau A., Kalinina O., Wagner M.C., Deubel V., Courageot M.P., Desprès P. 2003; Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J Gen Virol 84:2781–2793 [View Article][PubMed]
    [Google Scholar]
  27. Cavuslu S., Starkey W.G., Kell B., Best J.M., Cason J. 1996; Detection of human papillomavirus type 16 in microtitre plate based immuno-enzymatic assays: use to determine E5 gene expression in cervical carcinomas. Clin Diagn Virol 5:215–218 [View Article][PubMed]
    [Google Scholar]
  28. Chacko A.R., Arifullah M., Sastri N.P., Jeyakanthan J., Ueno G., Sekar K., Read R.J., Dodson E.J., Rao D.C., Suguna K. 2011; Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 85:12721–12732 [View Article][PubMed]
    [Google Scholar]
  29. Chacko A.R., Jeyakanthan J., Ueno G., Sekar K., Rao C.D., Dodson E.J., Suguna K., Read R.J. 2012a; A new pentameric structure of rotavirus NSP4 revealed by molecular replacement. Acta Crystallogr D Biol Crystallogr 68:57–61[PubMed] [CrossRef]
    [Google Scholar]
  30. Chacko A.R., Zwart P.H., Read R.J., Dodson E.J., Rao C.D., Suguna K. 2012b; Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus. Acta Crystallogr D Biol Crystallogr 68:1541–1548 [View Article][PubMed]
    [Google Scholar]
  31. Chan C.M., Tsoi H., Chan W.M., Zhai S., Wong C.O., Yao X., Chan W.Y., Tsui S.K., Chan H.Y. 2009; The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function. Int J Biochem Cell Biol 41:2232–2239 [View Article][PubMed]
    [Google Scholar]
  32. Chandler D.E., Penin F., Schulten K., Chipot C. 2012; The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. PLOS Comput Biol 8:e1002702 [View Article][PubMed]
    [Google Scholar]
  33. Chen B.J., Leser G.P., Jackson D., Lamb R.A. 2008; The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 82:10059–10070[PubMed] [CrossRef]
    [Google Scholar]
  34. Chen C.C., Krüger J., Sramala I., Hsu H.J., Henklein P., Chen Y.M., Fischer W.B. 2011; ORF8a of SARS-CoV forms an ion channel: experiments and molecular dynamics simulations. Biochim Biophys Acta 1808:572–579 [View Article][PubMed]
    [Google Scholar]
  35. Chew C.F., Vijayan R., Chang J., Zitzmann N., Biggin P.C. 2009; Determination of pore-lining residues in the hepatitis C virus p7 protein. Biophys J 96:L10–L12[PubMed] [CrossRef]
    [Google Scholar]
  36. Chizhmakov I.V., Geraghty F.M., Ogden D.C., Hayhurst A., Antoniou M., Hay A.J. 1996; Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells. J Physiol 494:329–336 [View Article][PubMed]
    [Google Scholar]
  37. Ciampor F., Bayley P.M., Nermut M.V., Hirst E.M., Sugrue R.J., Hay A.J. 1992a; Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology 188:14–24 [View Article][PubMed]
    [Google Scholar]
  38. Ciampor F., Thompson C.A., Grambas S., Hay A.J. 1992b; Regulation of pH by the M2 protein of influenza A viruses. Virus Res 22:247–258[PubMed] [CrossRef]
    [Google Scholar]
  39. Ciampor F., Cmarko D., Cmarková J., Závodská E. 1995; Influenza virus M2 protein and haemagglutinin conformation changes during intracellular transport. Acta Virol 39:171–181[PubMed]
    [Google Scholar]
  40. Clarke D., Griffin S., Beales L., Gelais C.S., Burgess S., Harris M., Rowlands D. 2006; Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro . J Biol Chem 281:37057–37068 [View Article][PubMed]
    [Google Scholar]
  41. Coady M.J., Daniel N.G., Tiganos E., Allain B., Friborg J., Lapointe J.Y., Cohen E.A. 1998; Effects of Vpu expression on Xenopus oocyte membrane conductance. Virology 244:39–49 [View Article][PubMed]
    [Google Scholar]
  42. Cohen E.A., Terwilliger E.F., Sodroski J.G., Haseltine W.A. 1988; Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–534 [View Article][PubMed]
    [Google Scholar]
  43. Collins P.L., Mottet G. 1993; Membrane orientation and oligomerization of the small hydrophobic protein of human respiratory syncytial virus. J Gen Virol 74:1445–1450 [View Article][PubMed]
    [Google Scholar]
  44. Cook G.A., Opella S.J. 2010; NMR studies of p7 protein from hepatitis C virus. Eur Biophys J 39:1097–1104 [View Article][PubMed]
    [Google Scholar]
  45. Cook G.A., Opella S.J. 2011; Secondary structure, dynamics, and architecture of the p7 membrane protein from hepatitis C virus by NMR spectroscopy. Biochim Biophys Acta 1808:1448–1453 [View Article][PubMed]
    [Google Scholar]
  46. Cook G.A., Dawson L.A., Tian Y., Opella S.J. 2013; Three-dimensional structure and interaction studies of hepatitis C virus p7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine by solution nuclear magnetic resonance. Biochemistry 52:5295–5303 [View Article][PubMed]
    [Google Scholar]
  47. Cordes F.S., Kukol A., Forrest L.R., Arkin I.T., Sansom M.S., Fischer W.B. 2001; The structure of the HIV-1 Vpu ion channel: modelling and simulation studies. Biochim Biophys Acta 1512:291–298 [View Article][PubMed]
    [Google Scholar]
  48. Coric P., Saribas A.S., Abou-Gharbia M., Childers W., White M.K., Bouaziz S., Safak M. 2014; Nuclear magnetic resonance structure revealed that the human polyomavirus JC virus agnoprotein contains an α-helix encompassing the Leu/Ile/Phe-rich domain. J Virol 88:6556–6575 [View Article][PubMed]
    [Google Scholar]
  49. Couch R.B. 1969; Use of amantadine in the therapy and prophylaxis of A2 influenza. Bull World Health Organ 41:695–696[PubMed]
    [Google Scholar]
  50. Cross T.A., Dong H., Sharma M., Busath D.D., Zhou H.X. 2012; M2 protein from influenza A: from multiple structures to biophysical and functional insights. Curr Opin Virol 2:128–133 [View Article][PubMed]
    [Google Scholar]
  51. Daniels R., Rusan N.M., Wadsworth P., Hebert D.N. 2006; SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24:955–966[PubMed] [CrossRef]
    [Google Scholar]
  52. Danthi P., Tosteson M., Li Q.H., Chow M. 2003; Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol 77:5266–5274 [View Article][PubMed]
    [Google Scholar]
  53. Darbinyan A., Siddiqui K.M., Slonina D., Darbinian N., Amini S., White M.K., Khalili K. 2004; Role of JC virus agnoprotein in DNA repair. J Virol 78:8593–8600[PubMed] [CrossRef]
    [Google Scholar]
  54. Davies W.L., Grunert R.R., Haff R.F., McGahen J.W., Neumayer E.M., Paulshock M., Watts J.C., Wood T.R., Hermann E.C., Hoffmann C.E. 1964; Antiviral activity of 1-adamantanamine (amantadine). Science 144:862–863 [View Article][PubMed]
    [Google Scholar]
  55. Davis M.P., Bottley G., Beales L.P., Killington R.A., Rowlands D.J., Tuthill T.J. 2008; Recombinant VP4 of human rhinovirus induces permeability in model membranes. J Virol 82:4169–4174[PubMed] [CrossRef]
    [Google Scholar]
  56. Dawkins A.T. Jr, Gallager L.R., Togo Y., Hornick R.B., Harris B.A. 1968; Studies on induced influenza in man. II. Double-blind study designed to assess the prophylactic efficacy of an analogue of amantadine hydrochloride. JAMA 203:1095–1099 [View Article][PubMed]
    [Google Scholar]
  57. de Jong A.S., Schrama I.W., Willems P.H., Galama J.M., Melchers W.J., van Kuppeveld F.J. 2002; Multimerization reactions of coxsackievirus proteins 2B, 2C and 2BC: a mammalian two-hybrid analysis. J Gen Virol 83:783–793[PubMed] [CrossRef]
    [Google Scholar]
  58. de Jong A.S., Wessels E., Dijkman H.B., Galama J.M., Melchers W.J., Willems P.H., van Kuppeveld F.J. 2003; Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem 278:1012–1021[PubMed] [CrossRef]
    [Google Scholar]
  59. de Jong A.S., Melchers W.J., Glaudemans D.H., Willems P.H., van Kuppeveld F.J. 2004; Mutational analysis of different regions in the coxsackievirus 2B protein: requirements for homo-multimerization, membrane permeabilization, subcellular localization, and virus replication. J Biol Chem 279:19924–19935 [View Article][PubMed]
    [Google Scholar]
  60. de Jong A.S., Visch H.J., de Mattia F., van Dommelen M.M., Swarts H.G., Luyten T., Callewaert G., Melchers W.J., Willems P.H., van Kuppeveld F.J. 2006; The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J Biol Chem 281:14144–14150 [View Article][PubMed]
    [Google Scholar]
  61. Deepa R., Durga Rao C., Suguna K. 2007; Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 152:847–859[PubMed] [CrossRef]
    [Google Scholar]
  62. Deltenre P., Henrion J., Canva V., Dharancy S., Texier F., Louvet A., De Maeght S., Paris J.C., Mathurin P. 2004; Evaluation of amantadine in chronic hepatitis C: a meta-analysis. J Hepatol 41:462–473 [View Article][PubMed]
    [Google Scholar]
  63. Disbrow G.L., Hanover J.A., Schlegel R. 2005; Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 79:5839–5846 [View Article][PubMed]
    [Google Scholar]
  64. Doedens J.R., Kirkegaard K. 1995; Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J 14:894–907[PubMed]
    [Google Scholar]
  65. Dong Y., Zeng C.Q., Ball J.M., Estes M.K., Morris A.P. 1997; The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A 94:3960–3965 [View Article][PubMed]
    [Google Scholar]
  66. Du Q.S., Huang R.B., Wang C.H., Li X.M., Chou K.C. 2009; Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus. J Theor Biol 259:159–164 [View Article][PubMed]
    [Google Scholar]
  67. Duff K.C., Ashley R.H. 1992; The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190:485–489 [View Article][PubMed]
    [Google Scholar]
  68. Duff K.C., Gilchrist P.J., Saxena A.M., Bradshaw J.P. 1994; Neutron diffraction reveals the site of amantadine blockade in the influenza A M2 ion channel. Virology 202:287–293 [View Article][PubMed]
    [Google Scholar]
  69. Duque M.D., Ma C., Torres E., Wang J., Naesens L., Juárez-Jiménez J., Camps P., Luque F.J., DeGrado W.F., other authors. 2011; Exploring the size limit of templates for inhibitors of the M2 ion channel of influenza A virus. J Med Chem 54:2646–2657 [View Article][PubMed]
    [Google Scholar]
  70. Einerhand A.W. 1998; Rotavirus NSP4 acts as a viral enterotoxin to induce diarrhea and is a potential target for rotavirus vaccines. J Pediatr Gastroenterol Nutr 27:123–124[PubMed] [CrossRef]
    [Google Scholar]
  71. Elbers K., Tautz N., Becher P., Stoll D., Rümenapf T., Thiel H.J. 1996; Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol 70:4131–4135[PubMed]
    [Google Scholar]
  72. Endo S., Okada Y., Orba Y., Nishihara H., Tanaka S., Nagashima K., Sawa H. 2003; JC virus agnoprotein colocalizes with tubulin. J Neurovirol 9 (Suppl) 1:10–14[PubMed] [CrossRef]
    [Google Scholar]
  73. Ewart G.D., Sutherland T., Gage P.W., Cox G.B. 1996; The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 70:7108–7115[PubMed]
    [Google Scholar]
  74. Ewart G.D., Mills K., Cox G.B., Gage P.W. 2002; Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J 31:26–35 [View Article][PubMed]
    [Google Scholar]
  75. Foster T.L., Verow M., Wozniak A.L., Bentham M.J., Thompson J., Atkins E., Weinman S.A., Fishwick C., Foster R., other authors. 2011; Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 54:79–90 [View Article][PubMed]
    [Google Scholar]
  76. Foster T.L., Thompson G.S., Kalverda A.P., Kankanala J., Bentham M., Wetherill L.F., Thompson J., Barker A.M., Clarke D., other authors. 2014; Structure-guided design affirms inhibitors of hepatitis C virus p7 as a viable class of antivirals targeting virion release. Hepatology 59:408–422 [View Article][PubMed]
    [Google Scholar]
  77. Freundt E.C., Yu L., Goldsmith C.S., Welsh S., Cheng A., Yount B., Liu W., Frieman M.B., Buchholz U.J., other authors. 2010; The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J Virol 84:1097–1109 [View Article][PubMed]
    [Google Scholar]
  78. Fuentes S., Tran K.C., Luthra P., Teng M.N., He B. 2007; Function of the respiratory syncytial virus small hydrophobic protein. J Virol 81:8361–8366 [View Article][PubMed]
    [Google Scholar]
  79. Gaedigk-Nitschko K., Schlesinger M.J. 1990; The Sindbis virus 6K protein can be detected in virions and is acylated with fatty acids. Virology 175:274–281 [View Article][PubMed]
    [Google Scholar]
  80. Gaedigk-Nitschko K., Schlesinger M.J. 1991; Site-directed mutations in Sindbis virus E2 glycoprotein's cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology 183:206–214 [View Article][PubMed]
    [Google Scholar]
  81. Gaedigk-Nitschko K., Ding M.X., Levy M.A., Schlesinger M.J. 1990; Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure. Virology 175:282–291 [View Article][PubMed]
    [Google Scholar]
  82. Gan S.W., Ng L., Lin X., Gong X., Torres J. 2008; Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein Sci 17:813–820 [View Article][PubMed]
    [Google Scholar]
  83. Gan S.W., Tan E., Lin X., Yu D., Wang J., Tan G.M., Vararattanavech A., Yeo C.Y., Soon C.H., other authors. 2012; The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J Biol Chem 287:24671–24689[PubMed] [CrossRef]
    [Google Scholar]
  84. Gan S.W., Surya W., Vararattanavech A., Torres J. 2014; Two different conformations in hepatitis C virus p7 protein account for proton transport and dye release. PLoS One 9:e78494 [View Article][PubMed]
    [Google Scholar]
  85. Gastaminza P., Cheng G., Wieland S., Zhong J., Liao W., Chisari F.V. 2008; Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 82:2120–2129 [View Article][PubMed]
    [Google Scholar]
  86. Genther Williams S.M., Disbrow G.L., Schlegel R., Lee D., Threadgill D.W., Lambert P.F. 2005; Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res 65:6534–6542 [View Article][PubMed]
    [Google Scholar]
  87. Gentzsch J., Brohm C., Steinmann E., Friesland M., Menzel N., Vieyres G., Perin P.M., Frentzen A., Kaderali L., Pietschmann T. 2013; Hepatitis C virus p7 is critical for capsid assembly and envelopment. PLoS Pathog 9:e1003355[PubMed] [CrossRef]
    [Google Scholar]
  88. Gervais C., F., Cantin A., Kukolj G., White P.W., Gauthier A., Vaillancourt F.H. 2011; Development and validation of a high-throughput screening assay for the hepatitis C virus p7 viroporin. J Biomol Screen 16:363–369 [View Article][PubMed]
    [Google Scholar]
  89. Giorda K.M., Raghava S., Zhang M.W., Hebert D.N. 2013; The viroporin activity of the minor structural proteins VP2 and VP3 is required for SV40 propagation. J Biol Chem 288:2510–2520 [View Article][PubMed]
    [Google Scholar]
  90. Gladue D.P., Holinka L.G., Largo E., Fernandez Sainz I., Carrillo C., O'Donnell V., Baker-Branstetter R., Lu Z., Ambroggio X, other authors. 2012; Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J Virol 86:6778–6791 [View Article][PubMed]
    [Google Scholar]
  91. González M.E., Carrasco L. 1998; The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry 37:13710–13719 [View Article][PubMed]
    [Google Scholar]
  92. Gottwein J.M., Jensen T.B., Mathiesen C.K., Meuleman P., Serre S.B., Lademann J.B., Ghanem L., Scheel T.K., Leroux-Roels G., Bukh J. 2011; Development and application of hepatitis C reporter viruses with genotype 1 to 7 core-nonstructural protein 2 (NS2) expressing fluorescent proteins or luciferase in modified JFH1 NS5A. J Virol 85:8913–8928[PubMed] [CrossRef]
    [Google Scholar]
  93. Grice A.L., Kerr I.D., Sansom M.S. 1997; Ion channels formed by HIV-1 Vpu: a modelling and simulation study. FEBS Lett 405:299–304 [View Article][PubMed]
    [Google Scholar]
  94. Griffin S. 2014; Too little, too late? Will inhibitors of the hepatitis C virus p7 ion channel ever be used in the clinic?. Future Med Chem 6:1893–1907[PubMed] [CrossRef]
    [Google Scholar]
  95. Griffin S.D., Beales L.P., Clarke D.S., Worsfold O., Evans S.D., Jaeger J., Harris M.P., Rowlands D.J. 2003; The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535:34–38 [View Article][PubMed]
    [Google Scholar]
  96. Griffin S.D., Harvey R., Clarke D.S., Barclay W.S., Harris M., Rowlands D.J. 2004; A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 85:451–461 [View Article][PubMed]
    [Google Scholar]
  97. Griffin S., Clarke D., McCormick C., Rowlands D., Harris M. 2005; Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes. J Virol 79:15525–15536[PubMed] [CrossRef]
    [Google Scholar]
  98. Griffin S., Stgelais C., Owsianka A.M., Patel A.H., Rowlands D., Harris M. 2008; Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 48:1779–1790 [View Article][PubMed]
    [Google Scholar]
  99. Guinea R., Carrasco L. 1994; Influenza virus M2 protein modifies membrane permeability in E. coli cells. FEBS Lett 343:242–246 [View Article][PubMed]
    [Google Scholar]
  100. Guo H.C., Sun S.Q., Sun D.H., Wei Y.Q., Xu J., Huang M., Liu X.T., Liu Z.X., Luo J.X., other authors. 2013; Viroporin activity and membrane topology of classic swine fever virus p7 protein. Int J Biochem Cell Biol 45:1186–1194[PubMed] [CrossRef]
    [Google Scholar]
  101. Hagen N., Bayer K., Rösch K., Schindler M. 2014; The intraviral protein interaction network of hepatitis C virus. Mol Cell Proteomics 13:1676–1689 [View Article][PubMed]
    [Google Scholar]
  102. Halaihel N., Liévin V., Ball J.M., Estes M.K., Alvarado F., Vasseur M. 2000; Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na+-d-glucose symporter of rabbit intestinal brush border membrane. J Virol 74:9464–9470 [View Article][PubMed]
    [Google Scholar]
  103. Halbert C.L., Galloway D.A. 1988; Identification of the E5 open reading frame of human papillomavirus type 16. J Virol 62:1071–1075[PubMed]
    [Google Scholar]
  104. Haqshenas G., Mackenzie J.M., Dong X., Gowans E.J. 2007; Hepatitis C virus p7 protein is localized in the endoplasmic reticulum when it is encoded by a replication-competent genome. J Gen Virol 88:134–142 [View Article][PubMed]
    [Google Scholar]
  105. Hay A.J., Wolstenholme A.J., Skehel J.J., Smith M.H. 1985; The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4:3021–3024[PubMed]
    [Google Scholar]
  106. He B., Leser G.P., Paterson R.G., Lamb R.A. 1998; The paramyxovirus SV5 small hydrophobic (SH) protein is not essential for virus growth in tissue culture cells. Virology 250:30–40 [View Article][PubMed]
    [Google Scholar]
  107. Holsinger L.J., Lamb R.A. 1991; Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183:32–43 [View Article][PubMed]
    [Google Scholar]
  108. Hong M., DeGrado W.F. 2012; Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci 21:1620–1633 [View Article][PubMed]
    [Google Scholar]
  109. Horie Y., Nakagomi O., Koshimura Y., Nakagomi T., Suzuki Y., Oka T., Sasaki S., Matsuda Y., Watanabe S. 1999; Diarrhea induction by rotavirus NSP4 in the homologous mouse model system. Virology 262:398–407 [View Article][PubMed]
    [Google Scholar]
  110. Hout D.R., Gomez M.L., Pacyniak E., Gomez L.M., Inbody S.H., Mulcahy E.R., Culley N., Pinson D.M., Powers M.F., other authors. 2005; Scrambling of the amino acids within the transmembrane domain of Vpu results in a simian-human immunodeficiency virus (SHIVTM) that is less pathogenic for pig-tailed macaques. Virology 339:56–69 [View Article][PubMed]
    [Google Scholar]
  111. Hout D.R., Gomez L.M., Pacyniak E., Miller J.M., Hill M.S., Stephens E.B. 2006a; A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine. Virology 348:449–461 [View Article][PubMed]
    [Google Scholar]
  112. Hout D.R., Gomez M.L., Pacyniak E., Gomez L.M., Fegley B., Mulcahy E.R., Hill M.S., Culley N., Pinson D.M., other authors. 2006b; Substitution of the transmembrane domain of Vpu in simian-human immunodeficiency virus (SHIVKU1bMC33) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344:541–559 [View Article][PubMed]
    [Google Scholar]
  113. Hsieh C.H., Tsao Y.P., Wang C.H., Han C.P., Chang J.L., Lee J.Y., Chen S.L. 2000; Sequence variants and functional analysis of human papillomavirus type 16 E5 gene in clinical specimens. Arch Virol 145:2273–2284 [View Article][PubMed]
    [Google Scholar]
  114. Hsu K., Seharaseyon J., Dong P., Bour S., Marbán E. 2004; Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell 14:259–267[PubMed] [CrossRef]
    [Google Scholar]
  115. Hsu K., Han J., Shinlapawittayatorn K., Deschenes I., Marbán E. 2010; Membrane potential depolarization as a triggering mechanism for Vpu-mediated HIV-1 release. Biophys J 99:1718–1725 [View Article][PubMed]
    [Google Scholar]
  116. Hsu H.J., Lin M.H., Schindler C., Fischer W.B. 2015; Structure based computational assessment of channel properties of assembled ORF-8a from SARS-CoV. Proteins 83:300–308[PubMed] [CrossRef]
    [Google Scholar]
  117. Hu J., Fu R., Nishimura K., Zhang L., Zhou H.X., Busath D.D., Vijayvergiya V., Cross T.A. 2006; Histidines, heart of the hydrogen ion channel from influenza A virus: toward an understanding of conductance and proton selectivity. Proc Natl Acad Sci U S A 103:6865–6870 [View Article][PubMed]
    [Google Scholar]
  118. Hu J., Asbury T., Achuthan S., Li C., Bertram R., Quine J.R., Fu R., Cross T.A. 2007; Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from influenza A virus. Biophys J 92:4335–4343 [View Article][PubMed]
    [Google Scholar]
  119. Hu F., Luo W., Hong M. 2010; Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–508 [View Article][PubMed]
    [Google Scholar]
  120. Hyser J.M., Collinson-Pautz M.R., Utama B., Estes M.K. 2010; Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio 1:e00265-10 [View Article][PubMed]
    [Google Scholar]
  121. Hyser J.M., Utama B., Crawford S.E., Estes M.K. 2012; Genetic divergence of rotavirus nonstructural protein 4 results in distinct serogroup-specific viroporin activity and intracellular punctate structure morphologies. J Virol 86:4921–4934 [View Article][PubMed]
    [Google Scholar]
  122. Hyser J.M., Utama B., Crawford S.E., Broughman J.R., Estes M.K. 2013; Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J Virol 87:13579–13588 [View Article][PubMed]
    [Google Scholar]
  123. Ichinohe T., Pang I.K., Iwasaki A. 2010; Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404–410 [View Article][PubMed]
    [Google Scholar]
  124. Isherwood B.J., Patel A.H. 2005; Analysis of the processing and transmembrane topology of the E2p7 protein of hepatitis C virus. J Gen Virol 86:667–676 [View Article][PubMed]
    [Google Scholar]
  125. Ito M., Yanagi Y., Ichinohe T. 2012; Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog 8:e1002857[PubMed] [CrossRef]
    [Google Scholar]
  126. Ivanova L., Lustig S., Schlesinger M.J. 1995; A pseudo-revertant of a Sindbis virus 6K protein mutant, which corrects for aberrant particle formation, contains two new mutations that map to the ectodomain of the E2 glycoprotein. Virology 206:1027–1034 [View Article][PubMed]
    [Google Scholar]
  127. Jirasko V., Montserret R., Appel N., Janvier A., Eustachi L., Brohm C., Steinmann E., Pietschmann T., Penin F., Bartenschlager R. 2008; Structural and functional characterization of nonstructural protein 2 for its role in hepatitis C virus assembly. J Biol Chem 283:28546–28562 [View Article][PubMed]
    [Google Scholar]
  128. Jirasko V., Montserret R., Lee J.Y., Gouttenoire J., Moradpour D., Penin F., Bartenschlager R. 2010; Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. PLoS Pathog 6:e1001233 [View Article][PubMed]
    [Google Scholar]
  129. Johannessen M., Myhre M.R., Dragset M., Tümmler C., Moens U. 2008; Phosphorylation of human polyomavirus BK agnoprotein at Ser-11 is mediated by PKC and has an important regulative function. Virology 379:97–109 [View Article][PubMed]
    [Google Scholar]
  130. Jones C.T., Murray C.L., Eastman D.K., Tassello J., Rice C.M. 2007; Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81:8374–8383 [View Article][PubMed]
    [Google Scholar]
  131. Junjhon J., Lausumpao M., Supasa S., Noisakran S., Songjaeng A., Saraithong P., Chaichoun K., Utaipat U., Keelapang P., other authors. 2008; Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. J Virol 82:10776–10791 [View Article][PubMed]
    [Google Scholar]
  132. Junjhon J., Edwards T.J., Utaipat U., Bowman V.D., Holdaway H.A., Zhang W., Keelapang P., Puttikhunt C., Perera R., other authors. 2010; Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J Virol 84:8353–8358 [View Article][PubMed]
    [Google Scholar]
  133. Kalko S.G., Cachau R.E., Silva A.M. 1992; Ion channels in icosahedral virus: a comparative analysis of the structures and binding sites at their fivefold axes. Biophys J 63:1133–1145[PubMed] [CrossRef]
    [Google Scholar]
  134. Keelapang P., Sriburi R., Supasa S., Panyadee N., Songjaeng A., Jairungsri A., Puttikhunt C., Kasinrerk W., Malasit P., Sittisombut N. 2004; Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 78:2367–2381[PubMed] [CrossRef]
    [Google Scholar]
  135. Khoury G., Ewart G., Luscombe C., Miller M., Wilkinson J. 2010; Antiviral efficacy of the novel compound BIT225 against HIV-1 release from human macrophages. Antimicrob Agents Chemother 54:835–845 [View Article][PubMed]
    [Google Scholar]
  136. Khurana E., Dal Peraro M., DeVane R., Vemparala S., DeGrado W.F., Klein M.L. 2009; Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from influenza A virus. Proc Natl Acad Sci U S A 106:1069–1074 [View Article][PubMed]
    [Google Scholar]
  137. Kim C.G., Lemaitre V., Watts A., Fischer W.B. 2006; Drug–protein interaction with Vpu from HIV-1: proposing binding sites for amiloride and one of its derivatives. Anal Bioanal Chem 386:2213–2217[PubMed] [CrossRef]
    [Google Scholar]
  138. Krawczyk E., Suprynowicz F.A., Sudarshan S.R., Schlegel R. 2010; Membrane orientation of the human papillomavirus type 16 E5 oncoprotein. J Virol 84:1696–1703[PubMed] [CrossRef]
    [Google Scholar]
  139. Kuhl B.D., Cheng V., Donahue D.A., Sloan R.D., Liang C., Wilkinson J., Wainberg M.A. 2011; The HIV-1 Vpu viroporin inhibitor BIT225 does not affect Vpu-mediated tetherin antagonism. PLoS One 6:e27660 [View Article][PubMed]
    [Google Scholar]
  140. Kuhn R.J., Zhang W., Rossmann M.G., Pletnev S.V., Corver J., Lenches E., Jones C.T., Mukhopadhyay S., Chipman P.R., other authors. 2002; Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725 [View Article][PubMed]
    [Google Scholar]
  141. Kukol A., Arkin I.T. 1999; vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J 77:1594–1601 [View Article][PubMed]
    [Google Scholar]
  142. Kurtz S., Luo G., Hahnenberger K.M., Brooks C., Gecha O., Ingalls K., Numata K., Krystal M. 1995; Growth impairment resulting from expression of influenza virus M2 protein in Saccharomyces cerevisiae: identification of a novel inhibitor of influenza virus. Antimicrob Agents Chemother 39:2204–2209[PubMed] [CrossRef]
    [Google Scholar]
  143. Lama J., Carrasco L. 1992; Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J Biol Chem 267:15932–15937[PubMed]
    [Google Scholar]
  144. Law P.T., Wong C.H., Au T.C., Chuck C.P., Kong S.K., Chan P.K., To K.F., Lo A.W., Chan J.Y., other authors. 2005; The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86:1921–1930 [View Article][PubMed]
    [Google Scholar]
  145. Leechanachai P., Banks L., Moreau F., Matlashewski G. 1992; The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7:19–25[PubMed]
    [Google Scholar]
  146. Lemaitre V., Ali R., Kim C.G., Watts A., Fischer W.B. 2004; Interaction of amiloride and one of its derivatives with Vpu from HIV-1: a molecular dynamics simulation. FEBS Lett 563:75–81[PubMed] [CrossRef]
    [Google Scholar]
  147. Lemaitre V., Willbold D., Watts A., Fischer W.B. 2006; Full length Vpu from HIV-1: combining molecular dynamics simulations with NMR spectroscopy. J Biomol Struct Dyn 23:485–496[PubMed] [CrossRef]
    [Google Scholar]
  148. Leptak C., Ramon y Cajal S., Kulke R., Horwitz B.H., Riese D.J. II, Dotto G.P., DiMaio D. 1991; Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol 65:7078–7083[PubMed]
    [Google Scholar]
  149. Li H., Atkins E., Bruckner J., McArdle S., Qiu W.C., Thomassen L.V., Scott J., Shuhart M.C., Livingston S., other authors. 2012; Genetic and functional heterogeneity of the hepatitis C virus p7 ion channel during natural chronic infection. Virology 423:30–37 [View Article][PubMed]
    [Google Scholar]
  150. Li Y., To J., Verdià-Baguena C., Dossena S., Surya W., Huang M., Paulmichl M., Liu D.X., Aguilella V.M., Torres J. 2014; Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment. J Virol 88:11899–11914[PubMed] [CrossRef]
    [Google Scholar]
  151. Lin T.I., Schroeder C. 2001; Definitive assignment of proton selectivity and attoampere unitary current to the M2 ion channel protein of influenza A virus. J Virol 75:3647–3656 [View Article][PubMed]
    [Google Scholar]
  152. Lin C., Lindenbach B.D., Prágai B.M., McCourt D.W., Rice C.M. 1994; Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini. J Virol 68:5063–5073[PubMed]
    [Google Scholar]
  153. Lin Y., Bright A.C., Rothermel T.A., He B. 2003; Induction of apoptosis by paramyxovirus simian virus 5 lacking a small hydrophobic gene. J Virol 77:3371–3383 [View Article][PubMed]
    [Google Scholar]
  154. Lu W., Zheng B.J., Xu K., Schwarz W., Du L., Wong C.K., Chen J., Duan S., Deubel V., Sun B. 2006; Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A 103:12540–12545 [View Article][PubMed]
    [Google Scholar]
  155. Lu J.X., Sharpe S., Ghirlando R., Yau W.M., Tycko R. 2010; Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein Sci 19:1877–1896[PubMed] [CrossRef]
    [Google Scholar]
  156. Luik P., Chew C., Aittoniemi J., Chang J., Wentworth P. Jr, Dwek R.A., Biggin P.C., Vénien-Bryan C., Zitzmann N. 2009; The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc Natl Acad Sci U S A 106:12712–12716[PubMed] [CrossRef]
    [Google Scholar]
  157. Lusa S., Garoff H., Liljeström P. 1991; Fate of the 6K membrane protein of Semliki Forest virus during virus assembly. Virology 185:843–846 [View Article][PubMed]
    [Google Scholar]
  158. Luscombe C.A., Huang Z., Murray M.G., Miller M., Wilkinson J., Ewart G.D. 2010; A novel hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-alpha-2b and nucleoside analogues. Antiviral Res 86:144–153[PubMed] [CrossRef]
    [Google Scholar]
  159. Ma C., Polishchuk A.L., Ohigashi Y., Stouffer A.L., Schön A., Magavern E., Jing X., Lear J.D., Freire E., other authors. 2009; Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel. Proc Natl Acad Sci U S A 106:12283–12288[PubMed] [CrossRef]
    [Google Scholar]
  160. Ma Y., Anantpadma M., Timpe J.M., Shanmugam S., Singh S.M., Lemon S.M., Yi M. 2011; Hepatitis C virus NS2 protein serves as a scaffold for virus assembly by interacting with both structural and nonstructural proteins. J Virol 85:86–97 [View Article][PubMed]
    [Google Scholar]
  161. Madan V., García M.J., Sanz M.A., Carrasco L. 2005; Viroporin activity of murine hepatitis virus E protein. FEBS Lett 579:3607–3612 [View Article][PubMed]
    [Google Scholar]
  162. Mangia A., Leandro G., Helbling B., Renner E.L., Tabone M., Sidoli L., Caronia S., Foster G.R., Zeuzem S., other authors. 2004; Combination therapy with amantadine and interferon in naïve patients with chronic hepatitis C: meta-analysis of individual patient data from six clinical trials. J Hepatol 40:478–483 [View Article][PubMed]
    [Google Scholar]
  163. Masante C., El Najjar F., Chang A., Jones A., Moncman C.L., Dutch R.E. 2014; The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J Virol 88:6423–6433 [View Article][PubMed]
    [Google Scholar]
  164. Maufort J.P., Genther Williams S.M., Pitot H.C., Lambert P.F. 2007; Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 67:6106–6112 [View Article][PubMed]
    [Google Scholar]
  165. Maynard M., Pradat P., Bailly F., Rozier F., Nemoz C., Si Ahmed S.N., Adeleine P., Trépo C., French Multicenter Group. 2006; Amantadine triple therapy for non-responder hepatitis C patients. Clues for controversies (ANRS HC 03 BITRI). J Hepatol 44:484–490 [View Article][PubMed]
    [Google Scholar]
  166. McInerney G.M., Smit J.M., Liljeström P., Wilschut J. 2004; Semliki Forest virus produced in the absence of the 6K protein has an altered spike structure as revealed by decreased membrane fusion capacity. Virology 325:200–206 [View Article][PubMed]
    [Google Scholar]
  167. Mehnert T., Lam Y.H., Judge P.J., Routh A., Fischer D., Watts A., Fischer W.B. 2007; Towards a mechanism of function of the viral ion channel Vpu from HIV-1. J Biomol Struct Dyn 24:589–596 [View Article][PubMed]
    [Google Scholar]
  168. Mehnert T., Routh A., Judge P.J., Lam Y.H., Fischer D., Watts A., Fischer W.B. 2008; Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 70:1488–1497[PubMed] [CrossRef]
    [Google Scholar]
  169. Melton J.V., Ewart G.D., Weir R.C., Board P.G., Lee E., Gage P.W. 2002; Alphavirus 6K proteins form ion channels. J Biol Chem 277:46923–46931 [View Article][PubMed]
    [Google Scholar]
  170. Meredith L.W., Zitzmann N., McKeating J.A. 2013; Differential effect of p7 inhibitors on hepatitis C virus cell-to-cell transmission. Antiviral Res 100:636–639[PubMed] [CrossRef]
    [Google Scholar]
  171. Meshkat Z., Audsley M., Beyer C., Gowans E.J., Haqshenas G. 2009; Reverse genetic analysis of a putative, influenza virus M2 HXXXW-like motif in the p7 protein of hepatitis C virus. J Viral Hepat 16:187–194 [View Article][PubMed]
    [Google Scholar]
  172. Mihm U., Grigorian N., Welsch C., Herrmann E., Kronenberger B., Teuber G., von Wagner M., Hofmann W.P., Albrecht M., other authors. 2006; Amino acid variations in hepatitis C virus p7 and sensitivity to antiviral combination therapy with amantadine in chronic hepatitis C. Antivir Ther 11:507–519[PubMed]
    [Google Scholar]
  173. Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S. 2009; The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4:e8342 [View Article][PubMed]
    [Google Scholar]
  174. Mizushima H., Hijikata M., Asabe S., Hirota M., Kimura K., Shimotohno K. 1994; Two hepatitis C virus glycoprotein E2 products with different C termini. J Virol 68:6215–6222[PubMed]
    [Google Scholar]
  175. Montserret R., Saint N., Vanbelle C., Salvay A.G., Simorre J.P., Ebel C., Sapay N., Renisio J.G., Böckmann A., other authors. 2010; NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 285:31446–31461 [View Article][PubMed]
    [Google Scholar]
  176. Morris A.P., Scott J.K., Ball J.M., Zeng C.Q., O'Neal W.K., Estes M.K. 1999; NSP4 elicits age-dependent diarrhea and Ca2+ mediated I- influx into intestinal crypts of CF mice. Am J Physiol 277:G431–G444[PubMed]
    [Google Scholar]
  177. Mould J.A., Drury J.E., Frings S.M., Kaupp U.B., Pekosz A., Lamb R.A., Pinto L.H. 2000; Permeation and activation of the M2 ion channel of influenza A virus. J Biol Chem 275:31038–31050 [View Article][PubMed]
    [Google Scholar]
  178. Neil S.J., Zang T., Bieniasz P.D. 2008; Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430 [View Article][PubMed]
    [Google Scholar]
  179. Neirynck S., Deroo T., Saelens X., Vanlandschoot P., Jou W.M., Fiers W. 1999; A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5:1157–1163 [View Article][PubMed]
    [Google Scholar]
  180. Netland J., DeDiego M.L., Zhao J., Fett C., Alvarez E., Nieto-Torres J.L., Enjuanes L., Perlman S. 2010; Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology 399:120–128 [View Article][PubMed]
    [Google Scholar]
  181. Newton K., Meyer J.C., Bellamy A.R., Taylor J.A. 1997; Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J Virol 71:9458–9465[PubMed]
    [Google Scholar]
  182. Nieva J.L., Madan V., Carrasco L. 2012; Viroporins: structure and biological functions. Nat Rev Microbiol 10:563–574 [View Article][PubMed]
    [Google Scholar]
  183. O'Brien J.A., Taylor J.A., Bellamy A.R. 2000; Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J Virol 74:5388–5394 [View Article][PubMed]
    [Google Scholar]
  184. Ohigashi Y., Ma C., Jing X., Balannick V., Pinto L.H., Lamb R.A. 2009; An amantadine-sensitive chimeric BM2 ion channel of influenza B virus has implications for the mechanism of drug inhibition. Proc Natl Acad Sci U S A 106:18775–18779 [View Article][PubMed]
    [Google Scholar]
  185. OuYang B., Xie S., Berardi M.J., Zhao X., Dev J., Yu W., Sun B., Chou J.J. 2013; Unusual architecture of the p7 channel from hepatitis C virus. Nature 498:521–525 [View Article][PubMed]
    [Google Scholar]
  186. Padhan K., Minakshi R., Towheed M.A., Jameel S. 2008; Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J Gen Virol 89:1960–1969 [View Article][PubMed]
    [Google Scholar]
  187. Panjwani A., Strauss M., Gold S., Wenham H., Jackson T., Chou J.J., Rowlands D.J., Stonehouse N.J., Hogle J.M., Tuthill T.J. 2014; Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog 10:e1004294 [View Article][PubMed]
    [Google Scholar]
  188. Park S.H., Opella S.J. 2007; Conformational changes induced by a single amino acid substitution in the trans-membrane domain of Vpu: implications for HIV-1 susceptibility to channel blocking drugs. Protein Sci 16:2205–2215 [CrossRef]
    [Google Scholar]
  189. Park S.H., Mrse A.A., Nevzorov A.A., Mesleh M.F., Oblatt-Montal M., Montal M., Opella S.J. 2003; Three-dimensional structure of the channel-forming trans-membrane domain of virus protein u (Vpu) from HIV-1. J Mol Biol 333:409–424 [View Article][PubMed]
    [Google Scholar]
  190. Park S.H., De Angelis A.A., Nevzorov A.A., Wu C.H., Opella S.J. 2006; Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys J 91:3032–3042[PubMed] [CrossRef]
    [Google Scholar]
  191. Patargias G., Zitzmann N., Dwek R., Fischer W.B. 2006; Protein–protein interactions: modeling the hepatitis C virus ion channel p7. J Med Chem 49:648–655 [View Article][PubMed]
    [Google Scholar]
  192. Patargias G., Barke T., Watts A., Fischer W.B. 2009; Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses. Mol Membr Biol 26:309–320[PubMed] [CrossRef]
    [Google Scholar]
  193. Pavlović D., Neville D.C., Argaud O., Blumberg B., Dwek R.A., Fischer W.B., Zitzmann N. 2003; The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 100:6104–6108[PubMed] [CrossRef]
    [Google Scholar]
  194. Pedroza-Saavedra A., Lam E.W., Esquivel-Guadarrama F., Gutierrez-Xicotencatl L. 2010; The human papillomavirus type 16 E5 oncoprotein synergizes with EGF-receptor signaling to enhance cell cycle progression and the down-regulation of p27Kip1 . Virology 400:44–52 [View Article][PubMed]
    [Google Scholar]
  195. Perez M., García-Barreno B., Melero J.A., Carrasco L., Guinea R. 1997; Membrane permeability changes induced in Escherichia coli by the SH protein of human respiratory syncytial virus. Virology 235:342–351 [View Article][PubMed]
    [Google Scholar]
  196. Pérez-Berná A.J., Guillén J., Moreno M.R., Bernabeu A., Pabst G., Laggner P., Villalaín J. 2008; Identification of the membrane-active regions of hepatitis C virus p7 protein: biophysical characterization of the loop region. J Biol Chem 283:8089–8101 [View Article][PubMed]
    [Google Scholar]
  197. Phongphanphanee S., Rungrotmongkol T., Yoshida N., Hannongbua S., Hirata F. 2010; Proton transport through the influenza A M2 channel: three-dimensional reference interaction site model study. J Am Chem Soc 132:9782–9788 [View Article][PubMed]
    [Google Scholar]
  198. Pielak R.M., Chou J.J. 2010; Kinetic analysis of the M2 proton conduction of the influenza virus. J Am Chem Soc 132:17695–17697[PubMed] [CrossRef]
    [Google Scholar]
  199. Pielak R.M., Schnell J.R., Chou J.J. 2009; Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci U S A 106:7379–7384 [View Article][PubMed]
    [Google Scholar]
  200. Pielak R.M., Oxenoid K., Chou J.J. 2011; Structural investigation of rimantadine inhibition of the AM2-BM2 chimera channel of influenza viruses. Structure 19:1655–1663 [View Article][PubMed]
    [Google Scholar]
  201. Pim D., Collins M., Banks L. 1992; Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7:27–32[PubMed]
    [Google Scholar]
  202. Pinto L.H., Holsinger L.J., Lamb R.A. 1992; Influenza virus M2 protein has ion channel activity. Cell 69:517–528 [View Article][PubMed]
    [Google Scholar]
  203. Popescu C.I., Callens N., Trinel D., Roingeard P., Moradpour D., Descamps V., Duverlie G., Penin F., Héliot L., other authors. 2011; NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog 7:e1001278[PubMed] [CrossRef]
    [Google Scholar]
  204. Premkumar A., Wilson L., Ewart G.D., Gage P.W. 2004; Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett 557:99–103[PubMed] [CrossRef]
    [Google Scholar]
  205. Premkumar A., Horan C.R., Gage P.W. 2005; Dengue virus M protein C-terminal peptide (DVM-C) forms ion channels. J Membr Biol 204:33–38[PubMed] [CrossRef]
    [Google Scholar]
  206. Pryor M.J., Azzola L., Wright P.J., Davidson A.D. 2004; Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly. J Gen Virol 85:3627–3636 [View Article][PubMed]
    [Google Scholar]
  207. Raghava S., Giorda K.M., Romano F.B., Heuck A.P., Hebert D.N. 2011; The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog 7:e1002116 [View Article][PubMed]
    [Google Scholar]
  208. Regla-Nava J.A., Nieto-Torres J.L., Jimenez-Guardeño J.M., Fernandez-Delgado R., Fett C., Castaño-Rodríguez C., Perlman S., Enjuanes L., DeDiego M.L. 2015 [View Article] Severe acute respiratory syndrome coronaviruses with mutations in E protein are attenuated and promising vaccine candidates. J Virol 89:3870–3887
    [Google Scholar]
  209. Rey-Carrizo M., Torres E., Ma C., Barniol-Xicota M., Wang J., Wu Y., Naesens L., DeGrado W.F., Lamb R.A., other authors. 2013; 3-Azatetracyclo[5.2.1.1(5,8).0(1,5)]undecane derivatives: from wild-type inhibitors of the M2 ion channel of influenza A virus to derivatives with potent activity against the V27A mutant. J Med Chem 56:9265–9274 [View Article][PubMed]
    [Google Scholar]
  210. Rey-Carrizo M., Barniol-Xicota M., Ma C., Frigolé-Vivas M., Torres E., Naesens L., Llabrés S., Juárez-Jiménez J., Luque F.J., other authors. 2014; Easily accessible polycyclic amines that inhibit the wild-type and amantadine-resistant mutants of the M2 channel of influenza A virus. J Med Chem 57:5738–5747 [View Article][PubMed]
    [Google Scholar]
  211. Rodríguez M.I., Finbow M.E., Alonso A. 2000; Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 19:3727–3732 [View Article][PubMed]
    [Google Scholar]
  212. Römer W., Lam Y.H., Fischer D., Watts A., Fischer W.B., Göring P., Wehrspohn R.B., Gösele U., Steinem C. 2004; Channel activity of a viral transmembrane peptide in micro-BLMs: Vpu1-32 from HIV-1. J Am Chem Soc 126:16267–16274 [View Article][PubMed]
    [Google Scholar]
  213. Rosenberg M.R., Casarotto M.G. 2010; Coexistence of two adamantane binding sites in the influenza A M2 ion channel. Proc Natl Acad Sci U S A 107:13866–13871 [View Article][PubMed]
    [Google Scholar]
  214. Ruch T.R., Machamer C.E. 2012; A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus E protein. PLoS Pathog 8:e1002674 [View Article][PubMed]
    [Google Scholar]
  215. Sabin A.B. 1967; Amantadine hydrochloride. Analysis of data related to its proposed use for prevention of A2 influenza virus disease in human beings. JAMA 200:943–950 [View Article][PubMed]
    [Google Scholar]
  216. Safak M., Sadowska B., Barrucco R., Khalili K. 2002; Functional interaction between JC virus late regulatory agnoprotein and cellular Y-box binding transcription factor, YB-1. J Virol 76:3828–3838[PubMed] [CrossRef]
    [Google Scholar]
  217. Sahab Z., Sudarshan S.R., Liu X., Zhang Y., Kirilyuk A., Kamonjoh C.M., Simic V., Dai Y., Byers S.W., other authors. 2012; Quantitative measurement of human papillomavirus type 16 e5 oncoprotein levels in epithelial cell lines by mass spectrometry. J Virol 86:9465–9473 [View Article][PubMed]
    [Google Scholar]
  218. Saint N., Montserret R., Chipot C., Penin F. 2009; Structural and functional analysis of the HCV p7 protein. Methods Mol Biol 510:125–143[PubMed] [CrossRef]
    [Google Scholar]
  219. Sakaguchi T., Leser G.P., Lamb R.A. 1996; The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J Cell Biol 133:733–747[PubMed] [CrossRef]
    [Google Scholar]
  220. Sakaguchi T., Tu Q., Pinto L.H., Lamb R.A. 1997; The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc Natl Acad Sci U S A 94:5000–5005[PubMed] [CrossRef]
    [Google Scholar]
  221. Sakai A., Claire M.S., Faulk K., Govindarajan S., Emerson S.U., Purcell R.H., Bukh J. 2003; The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A 100:11646–11651 [View Article][PubMed]
    [Google Scholar]
  222. Sánchez-Martínez S., Huarte N., Maeso R., Madan V., Carrasco L., Nieva J.L. 2008; Functional and structural characterization of 2B viroporin membranolytic domains. Biochemistry 47:10731–10739 [View Article][PubMed]
    [Google Scholar]
  223. Sandoval I.V., Carrasco L. 1997; Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179. J Virol 71:4679–4693[PubMed]
    [Google Scholar]
  224. Sanz M.A., Carrasco L. 2001; Sindbis virus variant with a deletion in the 6K gene shows defects in glycoprotein processing and trafficking: lack of complementation by a wild-type 6K gene in trans . J Virol 75:7778–7784 [View Article][PubMed]
    [Google Scholar]
  225. Sanz M.A., Pérez L., Carrasco L. 1994; Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. J Biol Chem 269:12106–12110[PubMed]
    [Google Scholar]
  226. Saribas A.S., Arachea B.T., White M.K., Viola R.E., Safak M. 2011; Human polyomavirus JC small regulatory agnoprotein forms highly stable dimers and oligomers: implications for their roles in agnoprotein function. Virology 420:51–65 [View Article][PubMed]
    [Google Scholar]
  227. Saribas A.S., Abou-Gharbia M., Childers W., Sariyer I.K., White M.K., Safak M. 2013; Essential roles of Leu/Ile/Phe-rich domain of JC virus agnoprotein in dimer/oligomer formation, protein stability and splicing of viral transcripts. Virology 443:161–176 [View Article][PubMed]
    [Google Scholar]
  228. Sastri N.P., Viskovska M., Hyser J.M., Tanner M.R., Horton L.B., Sankaran B., Prasad B.V., Estes M.K. 2014; Structural plasticity of the coiled-coil domain of rotavirus NSP4. J Virol 88:13602–13612 [View Article][PubMed]
    [Google Scholar]
  229. Saunier B., Triyatni M., Ulianich L., Maruvada P., Yen P., Kohn L.D. 2003; Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 77:546–559[PubMed] [CrossRef]
    [Google Scholar]
  230. Scheel T.K., Prentoe J., Carlsen T.H., Mikkelsen L.S., Gottwein J.M., Bukh J. 2012; Analysis of functional differences between hepatitis C virus NS5A of genotypes 1–7 in infectious cell culture systems. PLoS Pathog 8:e1002696 [View Article][PubMed]
    [Google Scholar]
  231. Schlesinger M.J., London S.D., Ryan C. 1993; An in-frame insertion into the Sindbis virus 6K gene leads to defective proteolytic processing of the virus glycoproteins, a trans-dominant negative inhibition of normal virus formation, and interference in virus shut off of host-cell protein synthesis. Virology 193:424–432 [View Article][PubMed]
    [Google Scholar]
  232. Schnell J.R., Chou J.J. 2008; Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595 [View Article][PubMed]
    [Google Scholar]
  233. Schubert U., Bour S., Ferrer-Montiel A.V., Montal M., Maldarell F., Strebel K. 1996a; The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol 70:809–819[PubMed]
    [Google Scholar]
  234. Schubert U., Ferrer-Montiel A.V., Oblatt-Montal M., Henklein P., Strebel K., Montal M. 1996b; Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398:12–18 [View Article][PubMed]
    [Google Scholar]
  235. Schwarz S., Wang K., Yu W., Sun B., Schwarz W. 2011; Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 90:64–69[PubMed] [CrossRef]
    [Google Scholar]
  236. Schwarz S., Sauter D., Wang K., Zhang R., Sun B., Karioti A., Bilia A.R., Efferth T., Schwarz W. 2014; Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 80:177–182 [View Article][PubMed]
    [Google Scholar]
  237. Sharma M., Yi M., Dong H., Qin H., Peterson E., Busath D.D., Zhou H.X., Cross T.A. 2010; Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512 [View Article][PubMed]
    [Google Scholar]
  238. Sharma M., Li C., Busath D.D., Zhou H.X., Cross T.A. 2011; Drug sensitivity, drug-resistant mutations, and structures of three conductance domains of viral porins. Biochim Biophys Acta 1808:538–546[PubMed] [CrossRef]
    [Google Scholar]
  239. Sharpe S., Yau W.M., Tycko R. 2006; Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning. Biochemistry 45:918–933 [View Article][PubMed]
    [Google Scholar]
  240. Shen S., Lin P.S., Chao Y.C., Zhang A., Yang X., Lim S.G., Hong W., Tan Y.J. 2005; The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem Biophys Res Commun 330:286–292 [View Article][PubMed]
    [Google Scholar]
  241. Shim B.S., Choi Y.K., Yun C.H., Lee E.G., Jeon Y.S., Park S.M., Cheon I.S., Joo D.H., Cho C.H., other authors. 2011; Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One 6:e27953 [View Article][PubMed]
    [Google Scholar]
  242. Shimbo K., Brassard D.L., Lamb R.A., Pinto L.H. 1996; Ion selectivity and activation of the M2 ion channel of influenza virus. Biophys J 70:1335–1346 [View Article][PubMed]
    [Google Scholar]
  243. Shrivastava S., Mukherjee A., Ray R., Ray R.B. 2013; Hepatitis C virus induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages. J Virol 87:12284–12290[PubMed] [CrossRef]
    [Google Scholar]
  244. Skasko M., Wang Y., Tian Y., Tokarev A., Munguia J., Ruiz A., Stephens E.B., Opella S.J., Guatelli J. 2012; HIV-1 Vpu protein antagonizes innate restriction factor BST-2 via lipid-embedded helix–helix interactions. J Biol Chem 287:58–67 [View Article][PubMed]
    [Google Scholar]
  245. Snyder J.E., Kulcsar K.A., Schultz K.L., Riley C.P., Neary J.T., Marr S., Jose J., Griffin D.E., Kuhn R.J. 2013; Functional characterization of the alphavirus TF protein. J Virol 87:8511–8523 [View Article][PubMed]
    [Google Scholar]
  246. Stapleford K.A., Lindenbach B.D. 2011; Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 85:1706–1717[PubMed] [CrossRef]
    [Google Scholar]
  247. Steinmann E., Penin F., Kallis S., Patel A.H., Bartenschlager R., Pietschmann T. 2007a; Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 3:e103[PubMed] [CrossRef]
    [Google Scholar]
  248. Steinmann E., Whitfield T., Kallis S., Dwek R.A., Zitzmann N., Pietschmann T., Bartenschlager R. 2007b; Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology 46:330–338 [View Article][PubMed]
    [Google Scholar]
  249. StGelais C., Tuthill T.J., Clarke D.S., Rowlands D.J., Harris M., Griffin S. 2007; Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Res 76:48–58 [View Article][PubMed]
    [Google Scholar]
  250. StGelais C., Foster T.L., Verow M., Atkins E., Fishwick C.W., Rowlands D., Harris M., Griffin S. 2009; Determinants of hepatitis C virus p7 ion channel function and drug sensitivity identified in vitro . J Virol 83:7970–7981 [View Article][PubMed]
    [Google Scholar]
  251. Stouffer A.L., Acharya R., Salom D., Levine A.S., Di Costanzo L., Soto C.S., Tereshko V., Nanda V., Stayrook S., DeGrado W.F. 2008; Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599 [View Article][PubMed]
    [Google Scholar]
  252. Straight S.W., Hinkle P.M., Jewers R.J., McCance D.J. 1993; The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67:4521–4532[PubMed]
    [Google Scholar]
  253. Strebel K., Klimkait T., Martin M.A. 1988; A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241:1221–1223 [View Article][PubMed]
    [Google Scholar]
  254. Sugrue R.J., Hay A.J. 1991; Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology 180:617–624 [View Article][PubMed]
    [Google Scholar]
  255. Suprynowicz F.A., Krawczyk E., Hebert J.D., Sudarshan S.R., Simic V., Kamonjoh C.M., Schlegel R. 2010; The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol 84:10619–10629 [View Article][PubMed]
    [Google Scholar]
  256. Suzuki T., Okada Y., Semba S., Orba Y., Yamanouchi S., Endo S., Tanaka S., Fujita T., Kuroda S., other authors. 2005; Identification of FEZ1 as a protein that interacts with JC virus agnoprotein and microtubules: role of agnoprotein-induced dissociation of FEZ1 from microtubules in viral propagation. J Biol Chem 280:24948–24956 [View Article][PubMed]
    [Google Scholar]
  257. Suzuki T., Orba Y., Okada Y., Sunden Y., Kimura T., Tanaka S., Nagashima K., Hall W.W., Sawa H. 2010; The human polyoma JC virus agnoprotein acts as a viroporin. PLoS Pathog 6:e1000801[PubMed] [CrossRef]
    [Google Scholar]
  258. Tafazoli F., Zeng C.Q., Estes M.K., Magnusson K.E., Svensson L. 2001; NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol 75:1540–1546[PubMed] [CrossRef]
    [Google Scholar]
  259. Takeuchi K., Lamb R.A. 1994; Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 68:911–919[PubMed]
    [Google Scholar]
  260. Takeuchi K., Shaughnessy M.A., Lamb R.A. 1994; Influenza virus M2 protein ion channel activity is not required to maintain the equine-1 hemagglutinin in its native form in infected cells. Virology 202:1007–1011 [View Article][PubMed]
    [Google Scholar]
  261. Takeuchi K., Tanabayashi K., Hishiyama M., Yamada A. 1996; The mumps virus SH protein is a membrane protein and not essential for virus growth. Virology 225:156–162 [View Article][PubMed]
    [Google Scholar]
  262. Tan Y.J. 2005; The severe acute respiratory syndrome (SARS)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein. Virol J 2:5 [View Article][PubMed]
    [Google Scholar]
  263. Taube R., Alhadeff R., Assa D., Krugliak M., Arkin I.T. 2014; Bacteria-based analysis of HIV-1 Vpu channel activity. PLoS One 9:e105387 [View Article][PubMed]
    [Google Scholar]
  264. Tedbury P., Welbourn S., Pause A., King B., Griffin S., Harris M. 2011; The subcellular localization of the hepatitis C virus non-structural protein NS2 is regulated by an ion channel-independent function of the p7 protein. J Gen Virol 92:819–830 [View Article][PubMed]
    [Google Scholar]
  265. Tian P., Estes M.K., Hu Y., Ball J.M., Zeng C.Q., Schilling W.P. 1995; The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol 69:5763–5772[PubMed]
    [Google Scholar]
  266. Tian P., Ball J.M., Zeng C.Q., Estes M.K. 1996; The rotavirus nonstructural glycoprotein NSP4 possesses membrane destabilization activity. J Virol 70:6973–6981[PubMed]
    [Google Scholar]
  267. Togo Y., Hornick R.B., Dawkins A.T. Jr 1968; Studies on induced influenza in man. I. Double-blind studies designed to assess prophylactic efficacy of amantadine hydrochloride against A2/Rockville/1/65 strain. JAMA 203:1089–1094 [View Article][PubMed]
    [Google Scholar]
  268. Tomakidi P., Cheng H., Kohl A., Komposch G., Alonso A. 2000; Modulation of the epidermal growth factor receptor by the human papillomavirus type 16 E5 protein in raft cultures of human keratinocytes. Eur J Cell Biol 79:407–412 [View Article][PubMed]
    [Google Scholar]
  269. Torres J., Parthasarathy K., Lin X., Saravanan R., Kukol A., Liu D.X. 2006; Model of a putative pore: the pentameric alpha-helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys J 91:938–947 [View Article][PubMed]
    [Google Scholar]
  270. Torres J., Maheswari U., Parthasarathy K., Ng L., Liu D.X., Gong X. 2007; Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci 16:2065–2071 [View Article][PubMed]
    [Google Scholar]
  271. Triantafilou K., Kar S., Vakakis E., Kotecha S., Triantafilou M. 2013; Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax 68:66–75 [View Article][PubMed]
    [Google Scholar]
  272. Tu Q., Pinto L.H., Luo G., Shaughnessy M.A., Mullaney D., Kurtz S., Krystal M., Lamb R.A. 1996; Characterization of inhibition of M2 ion channel activity by BL-1743, an inhibitor of influenza A virus. J Virol 70:4246–4252[PubMed]
    [Google Scholar]
  273. Tuthill T.J., Groppelli E., Hogle J.M., Rowlands D.J. 2010 Picornaviruses. Curr Top Microbiol Immunol 343:43–89[PubMed]
    [Google Scholar]
  274. Valle G.F., Banks L. 1995; The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 76:1239–1245 [View Article][PubMed]
    [Google Scholar]
  275. van Kuppeveld F.J., Hoenderop J.G., Smeets R.L., Willems P.H., Dijkman H.B., Galama J.M., Melchers W.J. 1997; Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16:3519–3532 [View Article][PubMed]
    [Google Scholar]
  276. van Kuppeveld F.J., Melchers W.J., Willems P.H., Gadella T.W. Jr 2002; Homomultimerization of the coxsackievirus 2B protein in living cells visualized by fluorescence resonance energy transfer microscopy. J Virol 76:9446–9456 [View Article][PubMed]
    [Google Scholar]
  277. Verdiá-Báguena C., Nieto-Torres J.L., Alcaraz A., DeDiego M.L., Torres J., Aguilella V.M., Enjuanes L. 2012; Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 432:485–494 [View Article][PubMed]
    [Google Scholar]
  278. Vieyres G., Brohm C., Friesland M., Gentzsch J., Wölk B., Roingeard P., Steinmann E., Pietschmann T. 2013; Subcellular localization and function of an epitope-tagged p7 viroporin in hepatitis C virus-producing cells. J Virol 87:1664–1678[PubMed] [CrossRef]
    [Google Scholar]
  279. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H.G., other authors. 2005; Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796[PubMed] [CrossRef]
    [Google Scholar]
  280. Wang C., Takeuchi K., Pinto L.H., Lamb R.A. 1993; Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol 67:5585–5594[PubMed]
    [Google Scholar]
  281. Wang C., Lamb R.A., Pinto L.H. 1994; Direct measurement of the influenza A virus M2 protein ion channel activity in mammalian cells. Virology 205:133–140 [View Article][PubMed]
    [Google Scholar]
  282. Wang C., Lamb R.A., Pinto L.H. 1995; Activation of the M2 ion channel of influenza virus: a role for the transmembrane domain histidine residue. Biophys J 69:1363–1371 [View Article][PubMed]
    [Google Scholar]
  283. Wang J., Kim S., Kovacs F., Cross T.A. 2001; Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci 10:2241–2250 [View Article][PubMed]
    [Google Scholar]
  284. Wang J., Cady S.D., Balannik V., Pinto L.H., DeGrado W.F., Hong M. 2009; Discovery of spiro-piperidine inhibitors and their modulation of the dynamics of the M2 proton channel from influenza A virus. J Am Chem Soc 131:8066–8076 [View Article][PubMed]
    [Google Scholar]
  285. Wang J., Ma C., Balannik V., Pinto L.H., Lamb R.A., Degrado W.F. 2011a; Exploring the requirements for the hydrophobic scaffold and polar amine in inhibitors of M2 from influenza A virus. ACS Med Chem Lett 2:307–312 [View Article][PubMed]
    [Google Scholar]
  286. Wang J., Ma C., Fiorin G., Carnevale V., Wang T., Hu F., Lamb R.A., Pinto L.H., Hong M., other authors. 2011b; Molecular dynamics simulation directed rational design of inhibitors targeting drug-resistant mutants of influenza A virus M2. J Am Chem Soc 133:12834–12841 [View Article][PubMed]
    [Google Scholar]
  287. Wang J., Ma C., Wang J., Jo H., Canturk B., Fiorin G., Pinto L.H., Lamb R.A., Klein M.L., DeGrado W.F. 2013a; Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J Med Chem 56:2804–2812[PubMed] [CrossRef]
    [Google Scholar]
  288. Wang J., Ma C., Wang J., Jo H., Canturk B., Fiorin G., Pinto L.H., Lamb R.A., Klein M.L., DeGrado W.F. 2013b; Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J Med Chem 56:2804–2812 [View Article][PubMed]
    [Google Scholar]
  289. Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., Lamb R.A., Klein M.L., Degrado W.F. 2013c; Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc Natl Acad Sci U S A 110:1315–1320[PubMed] [CrossRef]
    [Google Scholar]
  290. Wetherill L.F., Holmes K.K., Verow M., Müller M., Howell G., Harris M., Fishwick C., Stonehouse N., Foster R., other authors. 2012; High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J Virol 86:5341–5351 [View Article][PubMed]
    [Google Scholar]
  291. Wharton S.A., Belshe R.B., Skehel J.J., Hay A.J. 1994; Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol 75:945–948 [View Article][PubMed]
    [Google Scholar]
  292. Whitehead S.S., Bukreyev A., Teng M.N., Firestone C.Y., St Claire M., Elkins W.R., Collins P.L., Murphy B.R. 1999; Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol 73:3438–3442[PubMed]
    [Google Scholar]
  293. Whitfield T., Miles A.J., Scheinost J.C., Offer J., Wentworth P. Jr, Dwek R.A., Wallace B.A., Biggin P.C., Zitzmann N. 2011; The influence of different lipid environments on the structure and function of the hepatitis C virus p7 ion channel protein. Mol Membr Biol 28:254–264 [View Article][PubMed]
    [Google Scholar]
  294. Willey R.L., Maldarelli F., Martin M.A., Strebel K. 1992a; Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66:7193–7200[PubMed]
    [Google Scholar]
  295. Willey R.L., Maldarelli F., Martin M.A., Strebel K. 1992b; Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66:226–234[PubMed]
    [Google Scholar]
  296. Williams J.K., Tietze D., Wang J., Wu Y., DeGrado W.F., Hong M. 2013; Drug-induced conformational and dynamical changes of the S31N mutant of the influenza M2 proton channel investigated by solid-state NMR. J Am Chem Soc 135:9885–9897 [View Article][PubMed]
    [Google Scholar]
  297. Wilson L., McKinlay C., Gage P., Ewart G. 2004; SARS coronavirus E protein forms cation-selective ion channels. Virology 330:322–331 [View Article][PubMed]
    [Google Scholar]
  298. Wilson L., Gage P., Ewart G. 2006; Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 353:294–306 [View Article][PubMed]
    [Google Scholar]
  299. Wingfield W.L., Pollack D., Grunert R.R. 1969; Therapeutic efficacy of amantadine HCl and rimantadine HCl in naturally occurring influenza A2 respiratory illness in man. N Engl J Med 281:579–584[PubMed] [CrossRef]
    [Google Scholar]
  300. Wong S.S., Chebib M., Haqshenas G., Loveland B., Gowans E.J. 2011; Dengue virus PrM/M proteins fail to show pH-dependent ion channel activity in Xenopus oocytes. Virology 412:83–90 [View Article][PubMed]
    [Google Scholar]
  301. Wong S.S., Haqshenas G., Gowans E.J., Mackenzie J. 2012; The dengue virus M protein localises to the endoplasmic reticulum and forms oligomers. FEBS Lett 586:1032–1037 [View Article][PubMed]
    [Google Scholar]
  302. Wozniak A.L., Griffin S., Rowlands D., Harris M., Yi M., Lemon S.M., Weinman S.A. 2010; Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog 6:e1001087 [View Article][PubMed]
    [Google Scholar]
  303. Wu Y., Canturk B., Jo H., Ma C., Gianti E., Klein M.L., Pinto L.H., Lamb R.A., Fiorin G., other authors. 2014; Flipping in the pore: discovery of dual inhibitors that bind in different orientations to the wild-type versus the amantadine-resistant S31N mutant of the influenza A virus M2 proton channel. J Am Chem Soc 136:17987–17995[PubMed] [CrossRef]
    [Google Scholar]
  304. Xie S., Wang K., Yu W., Lu W., Xu K., Wang J., Ye B., Schwarz W., Jin Q., Sun B. 2011; DIDS blocks a chloride-dependent current that is mediated by the 2B protein of enterovirus 71. Cell Res 21:1271–1275[PubMed] [CrossRef]
    [Google Scholar]
  305. Yao J.S., Strauss E.G., Strauss J.H. 1996; Interactions between PE2, E1, and 6K required for assembly of alphaviruses studied with chimeric viruses. J Virol 70:7910–7920[PubMed]
    [Google Scholar]
  306. Yu I.M., Zhang W., Holdaway H.A., Li L., Kostyuchenko V.A., Chipman P.R., Kuhn R.J., Rossmann M.G., Chen J. 2008; Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837 [View Article][PubMed]
    [Google Scholar]
  307. Yu I.M., Holdaway H.A., Chipman P.R., Kuhn R.J., Rossmann M.G., Chen J. 2009; Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. J Virol 83:12101–12107 [View Article][PubMed]
    [Google Scholar]
  308. Zhang W., Chipman P.R., Corver J., Johnson P.R., Zhang Y., Mukhopadhyay S., Baker T.S., Strauss J.H., Rossmann M.G., Kuhn R.J. 2003; Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912 [View Article][PubMed]
    [Google Scholar]
  309. Zhang R., Wang K., Lv W., Yu W., Xie S., Xu K., Schwarz W., Xiong S., Sun B. 2014; The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. Biochim Biophys Acta 1838:1088–1095 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000201
Loading
/content/journal/jgv/10.1099/vir.0.000201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error