Short Communication

Vif determines the requirement for CBF-β in APOBEC3 degradation

Rokusuke Yoshikawa,1† Junko S. Takeuchi,1† Eri Yamada,1 Yusuke Nakano,1,2 Fengrong Ren,3 Hiroshi Tanaka,3 Carsten Münk,4 Reuben S. Harris,5 Takayuki Miyazawa,6,7 Yoshio Koyanagi1 and Kei Sato1,8

Correspondence
Kei Sato
ksato@virus.kyoto-u.ac.jp

1Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
2Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto 8608556, Japan
3Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 1138510, Japan
4Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
5Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
6Laboratory of Signal Transduction, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
7Laboratory of Virolution, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
8CREST, Japan Science and Technology Agency, Saitama 3220012, Japan

APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3) proteins are cellular DNA deaminases that restrict a broad spectrum of lentiviruses. This process is counteracted by Vif (viral infectivity factor) of lentiviruses, which binds APOBEC3s and promotes their degradation. CBF-β (core binding factor subunit β) is an essential co-factor for the function of human immunodeficiency virus type 1 Vif to degrade human APOBEC3s. However, the requirement for CBF-β in Vif-mediated degradation of other mammalian APOBEC3 proteins is less clear. Here, we determined the sequence of feline CBFB and performed phylogenetic analyses. These analyses revealed that feline CBFB is under purifying selection. Moreover, we demonstrated that CBF-β is dispensable for feline immunodeficiency virus Vif-mediated degradation of APOBEC3s of its host. These findings suggested that primate lentiviruses have adapted to use CBF-β, an evolutionary stable protein, to counteract APOBEC3 proteins of their hosts after diverging from other lentiviruses.

Several human APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3) proteins, notably APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H, have the capacity to restrict human immunodeficiency virus type 1 (HIV-1) replication (Albin & Harris, 2010; Desimmie et al., 2014; Feng et al., 2014; Kitamura et al., 2011; Refsland & Harris, 2013). Although original studies focused on human APOBEC3G (Harris et al., 2003; Mariani et al., 2003; Sheehy et al., 2002; Zhang et al., 2003), subsequent work revealed that all placental mammals have APOBEC3 enzymes (Münk et al., 2012), albeit different numbers, and that these enzymes have the potential to attenuate the infectivity of a broad spectrum of viruses, including simian immunodeficiency virus (SIV) (Mariani et al., 2003), feline immunodeficiency virus (FIV) (Münk

cDNA cytosines to uracils during reverse transcription, which can debilitate viral function (Albin & Harris, 2010; Desimmie et al., 2014; Feng et al., 2014; Kitamura et al., 2011; Refsland & Harris, 2013). Although original studies focused on human APOBEC3G (Harris et al., 2003; Mariani et al., 2003; Sheehy et al., 2002; Zhang et al., 2003), subsequent work revealed that all placental mammals have APOBEC3 enzymes (Münk et al., 2012), albeit different numbers, and that these enzymes have the potential to attenuate the infectivity of a broad spectrum of viruses, including simian immunodeficiency virus (SIV) (Mariani et al., 2003), feline immunodeficiency virus (FIV) (Münk

†These authors contributed equally to this work.
The GenBank/EMBL/DDBJ accession number for the domestic cat CBFB sequence is LC003231.
et al., 2008; Zielonka et al., 2010), bovine immunodeficiency virus (BIV) (LaRue et al., 2010) and small ruminant lentiviruses (SRLVs; e.g. Maedi-Visna virus and caprine arthritis encephalitis virus) (LaRue et al., 2010). However, to counteract APOBEC3-mediated restriction, these lentiviruses encode a protein called Vif (viral infectivity factor). Vif recruits a cellular E3 ubiquitin ligase complex including cullin 5 (CUL5) and elongin B/C (ELOB/C), and degrades host APOBEC3 proteins through a ubiquitin/proteasome-dependent pathway (Albin & Harris, 2010; Desimmi et al., 2014; Feng et al., 2014; Kitamura et al., 2011; Refsand & Harris, 2013).

Several studies have demonstrated that CBF-β (core binding factor subunit β) is an essential co-factor for HIV-1 and SIV Vif proteins to form the ubiquitin ligase complex that degrades human and rhesus monkey APOBEC3 enzymes (Hultquist et al., 2012a; Jäger et al., 2012; Zhang et al., 2012). CBF-β normally functions as a transcription factor for haematopoiesis, T-cell differentiation and bone development through binding with Runt-related transcription factors 1, 2 and 3 (RUNX1, 2 and 3) (Adya et al., 2000; de Bruijn & Speck, 2004; Ito, 2008). Structural studies have provided additional compelling evidence that CBF-β is an integral part of the HIV-1 Vif ubiquitin ligase complex (Guo et al., 2014; Kim et al., 2013). In particular, the surface area of the CBF-β/HIV-1 Vif heterodimeric interface is nearly 5000 Å², which is larger than that in the CBF-β/RUNX complex (Guo et al., 2014).

Despite these advances, it is not clear whether CBF-β is required for non-primate lentiviral Vif proteins to degrade the APOBEC3 proteins of their hosts. For instance, although FIV Vif also degrades feline APOBEC3 proteins through a ubiquitin/proteasome-dependent pathway (Wang et al., 2011), a role for CBF-β in this complex has yet to be investigated. Moreover, the feline CBF-β gene (CBFB) has yet to be characterized. Here, we sequenced feline CBFB and performed molecular phylogenetic analyses to show it is under purifying selection. We further demonstrated that CBF-β was dispensable for FIV Vif function in degrading feline APOBEC3 proteins.

To investigate the conservation of CBFB in mammals, including domestic cats, in depth, we set out to determine the sequence of feline CBFB. The open reading frame (ORF) of domestic cat (Felis catus) CBFB was amplified by PCR using a cDNA library of the MYA-1 cell line (Shimojima et al., 2008) as the template and the following primers: fCBFB-F2, 5'-ATGCCCAGCGCTGCTGCCCCG-3′ and rCBFB-R1, 5’-TTACCGAATTCTGGATGTCATCACC-AC-3’. PCR was performed by using PrimeStar GXL DNA polymerase (TaKaRa) according to the manufacturer’s protocol. The obtained DNA fragment was cloned into pCR-Blunt II-TOPO plasmid by using a Zero Blunt TOPO PCR cloning kit (Life Technologies) according to the manufacturer’s protocol. The sequence of domestic cat CBFB was determined by a DNA sequencing service (Fasmac) and the data were analysed with Sequencher v5.1 software (Gene Codes). The domestic cat CBFB ORF was aligned with 27 mammalian and one avian CBFB sequences using MAFFT implemented in the GUIDANCE server (Penn et al., 2010). The sequences used in this study are listed in Table 1 and the resulting alignment was verified manually at the amino acid level. Then the phylogenetic tree of the 29 CBFB genes was reconstructed using the maximum-likelihood method with PhyML (Guindon et al., 2010). As shown in Fig. 1(a), domestic cat CBFB formed a cluster with those of ferret, Weddell seal and walrus, which is supported by a relatively high bootstrap value (91%).

We then conducted the analysis to estimate selective pressure acting on CBFB genes. The random effects likelihood (REL) method available in the HyPhy package was employed (Pond & Frost, 2005). As shown in Fig. 1(b), 41 sites were found to be under negative selection that had a Bayes factor >50 for dN< dS. In addition, the values of E (dN–dS) at all the codons except for codon 180 in CBFB were <0 (Fig. 1c). RUNX1-binding sites (Bravo et al., 2001; Tahirov et al., 2001; Yan et al., 2004) and Vif-binding sites (Du et al., 2013) were highly conserved in CBFB (Fig. 1c). Moreover, although the identity between human CBFB and domestic cat CBFB is 96.5% at the nucleotide level, the amino acid sequences were 100% identical (data not shown). Taken together, these results indicated that mammalian CBFB is under strong purifying selection and stably maintained in mammals.

It is known that domestic cat (F. catus) expresses five kinds of APOBEC3 proteins, APOBEC3Z2a, APOBEC3Z2b, APOBEC3Z2c, APOBEC3Z3 and APOBEC3Z2Z3 (LaRue et al., 2010; Münk et al., 2008; Stern et al., 2010; Zielonka et al., 2010), and that feline APOBECZ3 and APOBECZ3Z3 have the ability to restrict FIV infectivity (Zielonka & Münk, 2011). To determine whether CBF-β was required for FIV Vif as a co-factor to degrade feline APOBEC3s, we constructed a FLAG-tagged FIV Vif expression plasmid as follows: the codon-optimized ORF of FIV strain Petaluma with a FLAG-tag at the C terminus (the sequence is available upon request) was obtained from GeneArt Gene Synthesis service (Life Technologies). The obtained DNA was digested with BglII and Sall, and then was inserted into the BamHI/Sall sites of pDON-AI plasmid (TaKaRa). Expression plasmids for haemagglutinin (HA)-tagged feline APOBEC3Z2b (AY971954), feline APOBEC3Z3 (EU011792), feline APOBEC3Z2Z3 (HM100128) (Münk et al., 2008) and human CBFB (Jäger et al., 2012) were also used. Co-transfected each feline APOBEC3-HA expression plasmid and FIV Vif-FLAG expression plasmid with or without human CBF-β expression plasmid into HEK293T-shCBFB cells, a HEK293T cell line stably expressing small hairpin RNA targeting the 5’ UTR of endogenous human CBFB (Jäger et al., 2012), using Lipofectamine 2000 according to the manufacturer’s procedure (Life Technologies). Cells were harvested at 48 h post-transfection, and extracts were analysed by SDS-PAGE and Western blotting as described previously (Kobayashi et al., 2014a, b) with the following antibodies: anti-HA mAb (3F10; Roche), anti-FLAG polyclonal...
antibody (OctA; Santa Cruz), anti-CBF-β mAb (sc-56751; Santa Cruz) and anti-α-tubulin (TUBA) mAb (DM1A; Sigma). As described in Fig. 2(a), the levels of feline APOBECZ2b, APOBEC3Z3 and APOBEC3Z2Z3 were decreased by FIV Vif regardless of the presence or absence of CBF-β. These results showed that FIV Vif did not require CBF-β for feline APOBEC3 degradation.

Interestingly, it has been reported that the Vif protein of SIVmac can degrade feline APOBEC3Z2Z3 (Stern et al., 2010). This raises the possibility that feline APOBEC3Z2Z3 degradation may be governed directly by the APOBEC3–Vif interaction (i.e. SIVmac Vif may be able to degrade feline APOBEC3Z2Z3 without CBF-β). To address this, we constructed a FLAG-tagged SIVmac239 Vif expression plasmid as follows: PCR was performed by using PfuUltra High-Fidelity DNA Polymerase (Agilent Technologies) with pSIVmac239 (M33262) (kindly provided by Dr Tomoyuki Miura) as the template and the following primers: forward, 5’-TTTTTTTTGGATCCGCCACCATG-GAGGAGGAAAAGAGG-3’ and reverse, 5’-TTTTTTTT-TTGTTCGACTCATTATCGTCACTCATTGTGTAATCT-GCCGATATTCCCAAGAC-3’. The obtained SIVmac239 Vif-FLAG ORF fragment was digested with BamHI and SalI, and then was inserted into the BamHI/SalI site of pDON-AI plasmid. Plasmid integrity was confirmed by DNA sequencing, as described above. We co-transfected the feline APOBEC3Z2Z3-HA expression plasmid and either a FIV Vif-FLAG or a SIVmac Vif-FLAG expression plasmid with or without a human CBF-β expression plasmid into HEK293T-shCBFB cells (Jaéger et al., 2012). As shown in Fig. 2(b), we found that CBF-β was essential for SIVmac Vif to degrade feline APOBEC3Z2Z3. These results showed that CBF-β was essential for the Vif protein of SIVmac, a primate lentivirus, to degrade APOBEC3, regardless of the origin of the APOBEC3 protein.

Thus, we have shown that CBFβ is highly conserved in mammals, including the hosts of lentiviruses such as human, gorilla, chimpanzee, rhesus monkey, cattle, and domestic cat (Fig. 1). We have also demonstrated that FIV Vif does not use CBF-β for feline APOBEC3 degradation (Fig. 2). These data corroborate recent reports suggesting that not only FIV Vif but also BIV and SRLV Vif proteins do not require CBF-β to degrade APOBEC3 proteins of their hosts (Ai et al., 2014; Zhang et al., 2014). These observations indicate that only primate lentiviruses require CBF-β for APOBEC3 degradation and further suggest that

Table 1. GenBank accession numbers of the CBFβ genes used in this study

The common name of each primate is identical to that in Fig. 1(a).

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Homo sapiens</td>
<td>AK290462</td>
</tr>
<tr>
<td>Gorilla</td>
<td>Gorilla gorilla</td>
<td>XM_00457590</td>
</tr>
<tr>
<td>Chimpanzee</td>
<td>Pan troglodytes</td>
<td>GABD01004603</td>
</tr>
<tr>
<td>Gibbon</td>
<td>Nomascus leucogenys</td>
<td>XM_003262871</td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>Macaca mulatta</td>
<td>JU36882</td>
</tr>
<tr>
<td>Cynomolgus monkey</td>
<td>Macaca fascicularis</td>
<td>XM_005592190</td>
</tr>
<tr>
<td>Common marmoset</td>
<td>Callithrix jacchus</td>
<td>XM_002761058</td>
</tr>
<tr>
<td>Cattle</td>
<td>Bos taurus</td>
<td>NM_001191435</td>
</tr>
<tr>
<td>Killer whale</td>
<td>Orcinus orca</td>
<td>XM_004280877</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Tursiops truncatus</td>
<td>XM_004311020</td>
</tr>
<tr>
<td>Thirteen-lined ground squirrel</td>
<td>Ictidomys tridecannineans</td>
<td>XM_005318290</td>
</tr>
<tr>
<td>White rhinoceros</td>
<td>Ceratherium simum</td>
<td>XM_004431701</td>
</tr>
<tr>
<td>Ferret</td>
<td>Mustela putorius furo</td>
<td>XM_004744336</td>
</tr>
<tr>
<td>Domestic cat</td>
<td>Felis catus</td>
<td>LC003231 (this study)</td>
</tr>
<tr>
<td>Walrus</td>
<td>Odobenus rosmarus</td>
<td>XM_004393406</td>
</tr>
<tr>
<td>Weddell seal</td>
<td>Leptonychotes weddellii</td>
<td>XM_006741505</td>
</tr>
<tr>
<td>Nine-handed armadillo</td>
<td>Dasypus novemcinctus</td>
<td>XM_004460890</td>
</tr>
<tr>
<td>Manatee</td>
<td>Trichechus manatus</td>
<td>XM_004371510</td>
</tr>
<tr>
<td>Cape elephant shrew</td>
<td>Elephantulus edwardii</td>
<td>XM_006878708</td>
</tr>
<tr>
<td>Cape golden mole</td>
<td>Chrysoloris asiatica</td>
<td>XM_006863598</td>
</tr>
<tr>
<td>Golden hamster</td>
<td>Mesocricetus auratus</td>
<td>XM_005076189</td>
</tr>
<tr>
<td>Prairie vole</td>
<td>Microtus ochrogaster</td>
<td>XM_005345497</td>
</tr>
<tr>
<td>Rat</td>
<td>Rattus norvegicus</td>
<td>BC081946</td>
</tr>
<tr>
<td>Mouse</td>
<td>Mus musculus</td>
<td>D14571</td>
</tr>
<tr>
<td>American pika</td>
<td>Ochotona princeps</td>
<td>XM_004583922</td>
</tr>
<tr>
<td>Naked mole rat</td>
<td>Heteroecephalus glaber</td>
<td>XM_004843071</td>
</tr>
<tr>
<td>Degu</td>
<td>Octodon degus</td>
<td>XM_004625892</td>
</tr>
<tr>
<td>Chinchilla</td>
<td>Chinchilla lanigera</td>
<td>XM_005403704</td>
</tr>
<tr>
<td>Chicken</td>
<td>Gallus gallus</td>
<td>AF472513</td>
</tr>
</tbody>
</table>

http://vir.sgmjournals.org
non-primate lentiviruses have either maintained an ancestral CBF-β-independent mechanism or have evolved to use another co-factor in the same way to degrade APOBEC3 proteins of their ancestral hosts. Interestingly, it has been recently reported that HIV-1 Vif can utilize CBF-β proteins from flies (Drosophila melanogaster) and worms (Saccoglossus kowalevskii) as the co-factor for human APOBEC3 degradation (Han et al., 2014). This further suggests that the usability of CBF-β is not dependent on the hosts and that primate lentiviral Vif has adapted to use CBF-β as an essential co-factor during its evolution.

In comparison with BIV and SRLVs, the feline lentivirus FIV is phylogenetically closer to primate lentiviruses (Gifford, 2012). Therefore, our findings strongly suggest
that the requirement of CBF-β for primate lentiviral Vif arose after the divergence with the FIV lineage. As CBF-β is under purifying selection in mammals (Fig. 1), it would be difficult for CBF-β to change in order to evade primate lentiviral Vif-mediated hijacking. This may be advantageous for the virus because CBF-β is an evolutionarily stable protein.

FIV Vif is very different from HIV/SIV Vif. For instance, FIV Vif has ~60 extra amino acids compared with HIV/SIV Vif, and the identity and the similarity of FIV Vif (strain Petaluma) to HIV-1 Vif (strain NL4-3) are only 16.6 and 64.7%, respectively. These characteristics imply that FIV Vif is structurally dissimilar to HIV/SIV Vif. Additionally, Ai et al. (2014) have shown that the conserved CBF-β interaction sequences in SIV/HIV Vif are not present in FIV Vif. Furthermore, Wang et al. (2011) have reported that the FIV Vif has neither a CUL5 box nor HCCH zinc-binding motif, despite a functional requirement for CUL5 in APOBEC3 degradation. Due to these extensive differences with primate lentiviral Vif proteins, it is not clear whether FIV Vif has adapted to use another cellular protein(s) or whether it is capable of functioning without a CBF-β-like co-factor. More work will be needed to distinguish between these possibilities.

Acknowledgements

We would like to thank Ms. Naoko Misawa and Mr Yuichi Kimura (Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University) for experimental support, Dr Tomoyuki Ikeda (Laboratory of Primate model, Institute for Virus Research, Kyoto University) for providing pSIVmac239, Dr Terumasa Ikeda (University of Minnesota) for helpful suggestions and Ms Kotobu Misawa for dedicated support. This study was supported in part by grants from the following: the Aihara Innovative Mathematical Modelling Project, the Japan Society for the Promotion of Science through the ‘Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST)’, initiated by the Council for Science and Technology Policy of Japan (to K.S.); CREST, Japan Science and Technology Agency (to K.S.); Ministry of Health, Labor and Welfare of Japan (Health Labor Sciences Research Grant 26361601) (to K.S.); Takeda Science Foundation (to K.S.); Sumitomo Foundation Research Grant (to K.S.); Senshin Medical Research Foundation (to K.S.); Ichiro Kanehara Foundation (to K.S.); Kanae Foundation for the Promotion of Medical Science (to K.S.); Ansmann Foundation for AIDS Research (to C.M.); National Institutes of Health (RO1 AI064046 and P01 GM091743) (to R.H.); Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research B24390112 and S22220007) (to Y.K.); Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for Scientific Research on Innovative Areas 24119008) (to Y.K.); and Research on HIV/AIDS from Ministry of Health, Labor and Welfare of Japan (to Y.K.).

References

