In vitro replication competence of a hepatitis B genotype D/A recombinant virus: dissimilar biological behaviour regarding its parental genotypes

Julieta Trinks,1† Masaya Sugiyama,2,3 Yasuhito Tanaka,2 Fuat Kurbanov,2 Jorge Benetucci,4 Edgardo Giménez,5 Mercedes C. Weissenbacher,1,6 Masashi Mizokami3 and José R. Oubiña1

1Instituto de Microbiología y Parasitología Médica (IMPAM), Universidad de Buenos Aires (UBA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, Piso 11, 1121, Buenos Aires, Argentina
2Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasaki, Mizuho, Nagoya 467-8601, Japan
3Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa 272-8516, Japan
4Fundación de Ayuda al Inmunodeficiente (FUNDAI), Uspallata 2272, 1282, Buenos Aires, Argentina
5Hospital Zonal General de Agudos ‘Dr Isidoro G. Iriarte’, Allison Bell 770, 1878, Quilmes, Argentina
6National Academy of Medicine, Av. Las Heras 3092, 1425, Buenos Aires, Argentina

Hepatitis B virus (HBV) DNA recombinants contribute to ~30% of the overall full-length sequences already deposited in GenBank. However, their biological behaviour has not been analysed so far. In this study, the in vitro replication kinetics of the first D/A recombinant from the American continent differed from its parental genotypes, exhibiting higher extracellular levels of HBV DNA and hepatitis B e antigen. Southern blots of intracellular core-associated HBV DNA were in agreement with such results. Because this recombinant was obtained from an Argentinian injecting drug user belonging to a vulnerable community, these results are of singular relevance for regional public health. Further in vivo studies are urgently needed to determine the pathogenicity of these replicative competent clones.

Hepatitis B virus (HBV) infection is one of the most prevalent chronic viral infections among human beings. It often leads to cirrhosis and/or hepatocellular carcinoma, which is annually responsible for 1 million deaths worldwide. As a result, it is considered one of the major world health concerns.

Eight HBV genotypes (HBV/A–HBV/H) have been reported based on a sequence divergence greater than 8% over the entire genome. Another two genotypes referred to as HBV/I and HBV/J have also been proposed. Genotypes are further subdivided into subgenotypes, which have been recognized in HBV/A–D and F, if the divergence in the whole genome reaches between 4 and 8% (Lin & Kao, 2011). The global impact of HBV recombinants has also been described recently (Shi et al., 2012).

Evidence for the influence of HBV genotypes and/or subgenotypes on the progression of liver diseases in acute, fulminant and chronic infection, the clinical outcome and the response to antiviral treatment have been reported by several researchers (Kramvis & Kew, 2005; Lin & Kao, 2011; Liu et al., 2005). However, information about the effects of recombinant genomes on the clinical, prognostic and therapeutic aspects of the HBV infection is still lacking. Therefore, the aim of this study was to preliminarily analyse the very early replication dynamics of the infection of a HBV D/A recombinant and compare them with those...
of its parental genotypes (HBV/D and HBV/A) and of a highly replicative genotype (HBV/C) in an in vitro experimental system.

Serum samples were obtained from two previously recruited subjects (Trinks et al., 2008): (i) H-IDU6 who was chronically infected with an HBV/D3 genome, as determined by partial S and pre-C/C phylogenetic analysis (PHYLIP package version 3.5c: Joseph Felsenstein, University of Washington, Seattle, WA, USA); and (ii) H-IDU7 who showed a HBV ‘false’ occult infection (Raimondo et al., 2008) by a D3/A2 recombinant genome (breakpoints at nt 147 and 636, according to EcoRI restriction site numbering), as characterized by full-length phylogenetic and Simplot version 3.5.1 (Stuart Ray, Johns Hopkins University, Baltimore, MD, USA) analysis. Accordingly, this strain exhibited a recombinant HBV/A2 DNA region which corresponded to nt 147–636 of the S gene inserted in a backbone corresponding to HBV/D3.

HBV DNA was extracted from serum using QIAamp DNA blood kits (Qiagen). First, in order to fully characterize H-IDU6 HBV DNA, the complete genome was amplified and analysed by a reported method (Trinks et al., 2008). Then, pUC19 plasmids deprived of promoters (Invitrogen) carrying a 1.24-fold HBV genome of each sample were constructed as described previously (Sugiyama et al., 2006). Plasmids for HBV/A2 and HBV/C (Sugiyama et al., 2006) were also included in this study.

After 24 h of culture, Huh7 cells were transfected with plasmids equivalent to 24 µg HBV DNA constructs using Lipofectamine 2000 transfection reagent (Invitrogen). Transfection efficiency was monitored by GFP expression using flow cytometry (BD FACSCanto; BD Biosciences) after cell transfection with a pTARGET (Promega)–GFP expression vector. Except for Southern blotting, all experiments were conducted twice for each clone.

At 24 and 72 h post-transfection (p.t.), hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were determined from the supernatant by ARCHITECT (Abbott). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were also measured to determine cell viability. Supernatants from cells treated solely with Lipofectamine were included as negative controls.

At 72 h p.t., in order to confirm the HBV replication among all the studied clones, cells were lysed and the density of core-associated HBV DNA was compared by Southern blot hybridization with a mix of full-length probes of each genotype involved in the experiment (A2, C, D3 and D3/A2; Sugiyama et al., 2006).

Student’s t-test was used to compare the means and SD between any pair of samples: P<0.05 was considered statistically significant.

Biochemical and virological features of both patients from whom sera were obtained are shown in Table 1. The full-length genome was amplified from sample H-IDU6 and subjected to phylogenetic analysis. This sample was ascribed to HBV/D3 and the presence of recombination was ruled out by Simplot (Figs. S1 and S2b, available in JGV Online). None of the isolates possessed the mutation G1896A, A1762T or G1764A, which could have interfered with the expression of HBeAg and the efficiency of pre-genome encapsidation for replication. As expected for HBV/D, T1858 was observed in both isolates.

For construction of HBV D3/A2 recombinant and HBV/D3 vectors (Sugiyama et al., 2006), at least 25 clones for each PCR-amplified HBV hemigenome [fragments A (nt 17–1799) and B (nt 1595–239); Sugiyama et al., 2006] from each sample were sequenced and phylogenetically analysed. All clones from the HBV/D3 sample were ascribed to the D3 subgenotype. With regard to the D3/A2 recombinant sample, all 25 clones derived from fragment B were ascribed to the D3 subgenotype; in contrast, 40% of the analysed clones from fragment A were D3/A2 recombinants with breakpoints at nt 147 and 636, 32% belonged to the A2 subgenotype, 16% to recombinant clones with breakpoints at nt 505 and 630, 8% to recombinant clones

Table 1. Biochemical and virological features of patients from whom HBV isolates were recovered

<table>
<thead>
<tr>
<th>Feature</th>
<th>H-IDU6</th>
<th>H-IDU7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>HBsAg</td>
<td>+</td>
<td>–*</td>
</tr>
<tr>
<td>HBeAg</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HBc Ab</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HCV Ab</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HIV Ab</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HBV viral load</td>
<td>>110 × 10⁶ IU ml⁻¹</td>
<td>>110 × 10⁶ IU ml⁻¹</td>
</tr>
<tr>
<td>HBV genotype</td>
<td>D3</td>
<td>D3/A2 recombinant</td>
</tr>
</tbody>
</table>

*T113S and T131N mutants were detected within the major hydrophilic region of the deduced S amino acid sequence. A negative result for HBsAg had been originally obtained with the serum collected in 1995 and then studied with AxSYM (Abbott) (Trinks et al., 2008). These mutants became detectable when supernatants collected from Huh7 transfected cells were tested by means of the ARCHITECT assay (Abbott) in this study.
with breakpoints at nt 519 and 630, and 4% to D3 subgenotype (Fig. 1a). Because the most abundant recombinant clones were those exhibiting breakpoints at nt 147 and 636 (Fig. 1a and Fig. S2a), they were considered representative of the whole viral population and thus selected for D/A replicon construction.

Transfection efficiency ranged from 24.1 to 24.4% and cell viability was similar in all groups ($P>0.05$; data not shown, available upon request).

At 24 h p.t., the D3/A2 clone produced the highest levels of both antigens ($P<0.0001$; Fig. 1b). Moreover, at 72 h p.t., the HBsAg levels from HBV/A2 and the recombinant clone were the highest ($P>0.05$), followed by HBV/C and HBV/D3 ($P<0.0001$; Fig. 1b). At this time point, the recombinant clone produced the highest levels of HBeAg compared with its parental genotypes and also the HBV/C clone ($P<0.0001$; Fig. 1b).

At 72 h p.t., the HBV/C clone showed the highest viral load in the supernatant, closely followed by the recombinant clone, whose extracellular HBV DNA level was, in turn, higher than those from its parental genotypes ($P>0.05$; Fig. 1c).

Southern blotting undoubtedly confirmed previously published results regarding the HBV/C clone, which exhibited the highest intracellular replication level (Sugiyama et al., 2006). Interestingly, the level of the recombinant was higher than those from its parental genotypes (Fig. 1d). Negative controls processed in parallel confirmed the specificity of the above-mentioned results.

Fig. 1. (a) Analysis of clones derived from fragment A obtained from the recombinant strain H-IDU7. (b) HBsAg and HBeAg extracellular levels. COI, cut-off index. (c) HBV viral load in supernatant. (d) Core-associated HBV DNA in Southern blot analysis of Huh7 cell lysates transfected with plasmid constructs of genotype HBV/D3, HBV/A2, D3/A2 recombinant and HBV/C. An aliquot of non-transfected unlabelled full-length HBV/A2 probe (3.2 kb; positive control) and Huh7 cell lysates treated solely with transfection reagent (mock) were also included. The density of the bands corresponding to a hybridization signal was normalized to that obtained with the A2 clone, which exhibited the lowest density value (density = 1). An asterisk represents a statistical difference of $P<0.0001$ when compared with all the remaining genotypes. Double asterisks indicate a statistical difference of $P<0.0001$ in comparison with genotypes HBV/D3 and HBV/C. The absence of asterisks represents no statistical difference.
The influence of genotypes and/or subgenotypes on disease progression and clinical outcome of HBV infection is well documented. However, information regarding HBV recombinant behaviour is unknown.

In a previous study (Trinks et al., 2008), our group isolated a novel intergenotypic D/A recombinant strain from a patient (H-IDU7) co-infected with HIV/HCV. This strain, which was the first full-length D/A recombinant genome characterized from the American continent, exhibits a HBV/D3 backbone genome with an inserted segment of HBV/A2 within the Pol gene. After cloning this sample, we documented the co-circulation of HBV/D3, HBV/A2 genomes together with three different types of D/A recombinants of which one was dominant. In future studies, it will be interesting to compare the biological behaviour of these three dissimilar recombinants in an attempt to elucidate the reason(s) for the observed dominance of the D3/A2 recombinant clones with nt 147–636 breakpoints.

The observation of pure HBV/D3 and HBV/A2 clones confirms that co-infection with different HBV genotype strains is a prerequisite for recombination (Zhou et al., 2012). However, the mechanism of selection of a given strain in mixed infections, i.e. DNA exchange or (less likely throughout the lifespan of a given individual) DNA mutation evolution, still remains unknown.

In this study, the replication kinetics of this recombinant differed from those of its parental genotypes, exhibiting higher extracellular levels of HBV DNA, similar (to A2) or higher (than D3) HBsAg, and higher (than both) HBeAg values. The significance of these findings should be explored by using the primary hepatocyte infection and also in vivo uPA-SCID mice models.

Taking into account that one of the HBV DNA-binding sites for CREB transcription factor is placed at nt 143–154 and that it enhances HBsAg expression levels, as previously shown for an A2 replicon (Tacke et al., 2005), it seems plausible that those genomes showing the CCTGTG-ACGAAC binding site would exhibit similarly high HBsAg expression. This sequence was observed in the recombinant clone, as the 5' breakpoint for the A2 insert is placed at nt 147. Interestingly, such a binding site is mutated in the HBV/D3 replicon (CCTGCCTGAAC, mutations underlined), which could account for a lower level of pre-S/S transcription efficiency for such genotype (in contrast to HBV/A2) and consequently for a lower level of HBsAg expression, as reported previously (Sugiyama et al., 2006), the latter result also being observed in our study. Although HBsAg levels frequently reflect intrahepatic HBV replication in WT genomes (Chan et al., 2011), they do not necessarily mirror HBV DNA levels in some mutated pre-S/S genomes (Pollicino et al., 2012). Moreover, it has been shown that HBV/A2 is associated with higher HBsAg secretion and lower DNA replication compared with other genotypes (Sugiyama et al., 2006). Interestingly, our recombinant clone produced high levels of HBsAg, HBeAg and DNA viral load, whose highest titres are usually associated with HBeAg secretion. These results might be explained by the presence of an A2 insert in the PreS2/S region and a D3 backbone in the pre-C/C region.

However, the recombinant exhibited even higher HBeAg values and intracellular HBV DNA levels than the parental D3 clone, which could be explained by the presence of mutations T1766 and A1770 in the D3 backbone of the recombinant D3/A2 clone, which form putative hepatocyte nuclear factors 1 (HNF1)- and HNF3-binding sites related to enhanced viral replication (Baumert et al., 1996; Günther et al., 1996; Fig. 2). Moreover, the single mutation T1664C observed within the core upstream regulatory sequence (CURS; nt 1636–1742) in the recombinant, but which was absent in the D3 parental genotype, might also account for such a difference in HBeAg secretion. As the CURS region exerts a strong stimulating effect on the basal core promoter (Yuh et al., 1992), it is tempting to speculate that such a mutation might produce the higher HBeAg levels observed with the recombinant compared with the D3 parental clone.

Because this recombinant strain was obtained from an intravenous drug user belonging to a highly vulnerable population, a possible viral escape mechanism from the immune system might have been facilitated by this recombinant evolution. This notion is supported by the observation of high levels of HBeAg, which are usually associated with an immune evasion genotype (Sugiyama et al., 2006). However, it remains unclear whether this recombinant strain may have been co-selected by the immune system of the patient during the lifespan of the latter.

Moreover, it has been shown that HBV/A2 is associated with higher HBsAg secretion and lower DNA replication compared with other genotypes (Sugiyama et al., 2006). Interestingly, our recombinant clone produced high levels of HBsAg, HBeAg and DNA viral load, whose highest titres are usually associated with HBeAg secretion. These results might be explained by the presence of an A2 insert in the PreS2/S region and a D3 backbone in the pre-C/C region.

However, the recombinant exhibited even higher HBeAg values and intracellular HBV DNA levels than the parental D3 clone, which could be explained by the presence of mutations T1766 and A1770 in the D3 backbone of the recombinant D3/A2 clone, which form putative hepatocyte nuclear factors 1 (HNF1)- and HNF3-binding sites related to enhanced viral replication (Baumert et al., 1996; Günther et al., 1996; Fig. 2). Moreover, the single mutation T1664C observed within the core upstream regulatory sequence (CURS; nt 1636–1742) in the recombinant, but which was absent in the D3 parental genotype, might also account for such a difference in HBeAg secretion. As the CURS region exerts a strong stimulating effect on the basal core promoter (Yuh et al., 1992), it is tempting to speculate that such a mutation might produce the higher HBeAg levels observed with the recombinant compared with the D3 parental clone.

Because this recombinant strain was obtained from an intravenous drug user belonging to a highly vulnerable population, a possible viral escape mechanism from the immune system might have been facilitated by this recombinant evolution. This notion is supported by the observation of high levels of HBeAg, which are usually associated with an immune evasion genotype (Sugiyama et al., 2006). However, it remains unclear whether this recombinant strain may have been co-selected by the immune system of the patient during the lifespan of the latter.

Fig. 2. Sequences of the basal core promoter (BCP) nt 1730–1785 and the overlapping region of the X protein of the HBV clones. The binding sites for HNF1 and HNF3 are aligned with the corresponding region of the HBV genome. The symbols for nucleotide ambiguities are as follows: V, A/C/G; W, A/T; R, A/G; K, G/T; Y, C/T.
group in Argentina, these results are of singular relevance for regional public health. Further in vivo studies are needed to determine the pathogenicity of these replicative competent clones.

Acknowledgements

The authors would like to express their gratitude to M. V. Illas for enhancing the readability of the manuscript, to Dr G. Turk (INBIRS, Faculty of Medicine, University of Buenos Aires, Argentina) for providing the pTARGET-GFP expression vector and to Dr B. Livellara (Italian Hospital of Buenos Aires, Argentina) for allowing the use of the ultracentrifuge. J.T. is a former recipient of an International Union of Microbiology Societies (IUMS) fellowship to work in Dr Mizokami’s laboratory. This work was supported by the following grants: PICT 00440/06, PIP CONICET 6065/06 and UBACyT 20020100101063. The authors declare no conflict of interest. This study was approved by an Ethics Committee on Research (CIEI-FM-UBA) and both participants provided their informed written consent.

References

