Receptors are essential determinants of host susceptibility to virus infections. In some cases, the pattern of receptor expression is the major factor defining organ, tissue and cell tropism of a virus (Maddon et al., 1986). In other cases, additional factors modulate viral replication at sites with sufficient receptor amounts. Local innate immunity can restrict virus replication in potentially susceptible organs (Ida-Hosonuma et al., 2005). Tissue-specific alternative splicing of receptor transcripts may control infection spread within a body (Kohaar et al., 2010).

Murine hepatitis virus strain A59 (MHV-A59), one of the prototypic coronaviruses, uses carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) as a receptor (Dveksler et al., 1991; Hemmila et al., 2004), although the quantities of CEACAM1 do not explain MHV-A59 organ tropism in mice (Bender et al., 2010; Godfraind et al., 1995). MHV was found in the highly expressing small intestine and liver, but also in organs with low CEACAM1 amounts, such as lung and brain (Barthold & Smith, 1984; Lavi et al., 1986; Raaben et al., 2009). Remarkably, the virus fails to infect kidneys, despite their high CEACAM1 expression level (Barthold & Smith, 1984). In addition to mediating virus entry, CEACAM1 promotes cell-to-cell fusion (Vennema et al., 1990) and may be directly responsible for the cytotoxicity of MHV infection (Rao & Gallagher, 1998).

CEACAM1 belongs to a multimember family of membrane-anchored and soluble CEA proteins containing immunoglobulin (Ig)-like domains (Beauchemin et al., 1999). CEACAM1 participates in homophilic and heterophilic interactions and is involved in the regulation of cell growth and signalling (Chen et al., 2009; Öbrink, 1997). The development of some tumours correlates with either up- or downregulation of CEACAM1 expression (Hammarström, 1999; Öbrink, 2008), although the mechanism of its action in promoting or suppressing tumour growth remains unclear. The mouse Ceacam1 gene contains nine exons (Fig. 1) and alternative splicing of Ceacam1 transcripts plays an important role in the regulation of its function (Chen et al., 2009). Some findings suggest that it is not the general CEACAM1 expression level that is linked to oncogenesis, but rather the ratio of the protein’s isoforms (Gaur et al., 2008; Singer et al., 2000), especially CEACAM1-4 containing four Ig-like domains (N, A1, B and A2) versus CEACAM1-2 having two such domains (N and A2), and CEACAM1-L versus CEACAM1-S, which have long and short cytoplasmic tails (CT), respectively. Interestingly, the relative abundance of CEACAM1 isoforms is a dynamic parameter that correlates with cell density (Singer et al., 2000). Secreted isoforms lacking the transmembrane domain (TM) were identified in humans and rodents (Budt et al., 2002; Kuroki et al., 2004).
1991; Terahara et al., 2009), but remain poorly characterized despite the use of soluble CEACAM1 detection in body fluids in cancer diagnostics (Hundt et al., 2007; Simeone et al., 2007). Notwithstanding the variety and multifunctionality of CEACAM1 isoforms, the physiological role of the protein turned out to be sufficiently redundant for knockout Ceacam1−/− mice to be viable and fertile (Hemmila et al., 2004).

Different isoforms of mouse CEACAM1 were shown to be competent MHV receptors (Devksler et al., 1993). The prevalence of CEACAM1-4 versus CEACAM1-2, as well as CEACAM1-L versus CEACAM1-S, does not account for MHV-A59 tropism within the mouse central nervous system (Bender et al., 2010). Recombinant soluble CEACAM1 lacking the TM domain neutralized MHV in vitro (Schickli et al., 1997; Terahara et al., 2009), indicating its capability to influence MHV infection in vivo.

We were interested to find out whether a threshold amount of Ceacam1 expression is required to allow MHV infection and whether the expression pattern of secreted isoforms of the receptor contributes to MHV organ tropism.

In order to obtain a reference set for Ceacam1 expression measurements in mice and to establish the quantitative relationship between mRNA and protein levels, we determined the amounts of membrane-anchored CEACAM1 and corresponding Ceacam1 transcripts in eight cell types. These belonged to six distinct cell lines derived from different mouse strains: four were fibroblast-like, NIH 3T3 (NIH Swiss mouse), 17Cl-1 (BALB/c), Sac(+) and 17Cl-1U (C57BL/6), one was myoblast-like C2C12 (C3H), and the last one was the astrocytoma-derived DBT (CDF1) cell line. Two of the cell lines, 17Cl-1 and L929, were each the last one was the astrocytoma-derived DBT (CDF1) cell line. Two of the cell lines, 17Cl-1 and L929, were each representative by two lineages from different sources and with different passage history. Descendants of the 17Cl-1 line originated from Dr P. Rottier's laboratory (17Cl-1U; different passage history originating from Dr P. Rottier's laboratory. All cell lines were susceptible to productive MHV-A59 infection, which was non-cytopathogenic in C2C12 and NIH 3T3 cells and cytopathogenic in the others (Slobodskaya et al., 2008).

Cells harvested from one dish were divided into two parts, one used for RNA extraction and transcript analysis and the other for the flow-cytometrical analysis of the expression level of membrane-anchored CEACAM1. Compared to earlier results (Slobodskaya et al., 2008), the use of a second antibody conjugated to allophycocyanin instead of fluorescein-isothiocyanate markedly improved the signal to noise ratio during flow cytometry. With the improved resolution between CEACAM1-positive and autofluorescent control cells, it became obvious that in all but one of the cell lines the majority of the cells (60–100%) were truly CEACAM1-positive (Fig. 2a). It remained unresolved whether the majority of C2C12 cells were weakly CEACAM1-positive or truly negative. The heterogeneity of CEACAM1 amounts on the surface of individual cells in a population (illustrated by the peak width in Fig. 2a) differed between cell types. The same was true for the total amount of surface-expressed protein, which differed up to 100-fold between cell populations (Fig. 2b). Remarkably, cells having the same origin, but a different history, 17Cl-1S and 17Cl-1U, displayed a 10-fold difference in the amounts of CEACAM1.

We determined relative amounts and ratio of transcripts encoding membrane-anchored and secreted CEACAM1 isoforms. The quantity of the first transcript was also compared to the amount of the corresponding protein. Transcripts specifying membrane-anchored CEACAM1 isoforms all contain the 121 nt long exon 6, which encodes the TM (Fig. 1). The amount of these transcripts (mRNA TM +) was determined with the use of the exon 6-specific primers 5′-CAGACTTCCTGGAATAG-3′ and 5′-CGC-CAGACTTCCTGGAATAG-3′. We also measured the total amount of Ceacam1 transcripts (mRNA all) by targeting exon 5 (primers 5′-CCAACACACGCTCAAAGACTA-3′ and 5′-GATGCCTGGAAGACTCTC-3′), which is present in all Ceacam1 mRNAs (Fig. 1). The difference between amounts of mRNA all and mRNA TM + gave the quantity of Ceacam1 transcripts specifying secreted isoforms (mRNA TM −). RT-qPCR was performed as described elsewhere (Versteeg et al., 2006) with an additional DNase I treatment of the RNA prior to reverse transcription. The relative amounts of Ceacam1 mRNA were determined using standard curves obtained with a plasmid containing a cDNA copy of a nine-exon-containing CEACAM1 variant. Transcript amounts were normalized to the amounts of 18S rRNA (primers 5′-CCCAG-TAAGTGCAGGTTCATA-3′ and 5′-GATCCGAGGCC-TCACTAAA-3′) determined in the same samples.

![Fig. 1. Ceacam1 gene structure. The nine Ceacam1 exons are shown as rectangles (up to scale), while introns (not to scale) are depicted by lines. Light grey shaded (boxes) exons 3, 4, 6 and 7 may be spliced out. Dark grey areas represent 5′- and 3′-non-coding regions. The segments encoding leader L, four Ig-like domains N, A1, A2 and TM, and CT are indicated above the transcript. RT-qPCR assays specific for the exons 5 and 6 were used to quantify all Ceacam1 transcripts and transcripts encoding all membrane-bound isoforms, respectively.](http://vir.sgmjournals.org)
The quantity of the transcripts containing the TM domain-encoding exon 6 (mRNA TM+; coefficient 0.97) (Fig. 2b). The ratio of the concentrations of a protein and its corresponding mRNA depends on the rates of synthesis and decay of both molecules (Schwanhaeusser et al., 2011). We found that for membrane-anchored CEACAM1 this ratio was similar in cells of different origin and genetic backgrounds, and the quantity of the exon 6-containing mRNA reflected the amount of the protein.

The molar ratio of Ceacam1 transcripts encoding TM+ and TM− isoforms varied between 1 and 6.5 and did not correlate with the general level of Ceacam1 gene expression or cell density. This ratio was found to be 1–1.2 in low-(C2C12) and high-expressing cells [L929, 17Cl-1S and Sac(−)], while in four other cultures the mRNA TM+ was more abundant, with the ratios being 1.4 (NIH 3T3), 1.7 (L), 2.6 (DBT) and 6.5 (17Cl-1U). Due to cell size differences, comparison of their density was not informative for cells of different origin. However, the 17Cl-1 sublines, 17Cl-1U and 17Cl-1S, with similar cell size and density at the time of harvest (1.1–1.4 × 106 cells cm−2), had the most dissimilar ratio of Ceacam1 transcripts (6.5 and 1.0, respectively), suggesting that factors other than cell density affect generation of these splice variants.

We examined Ceacam1 gene expression in brain, liver, small intestine, spleen, kidney, lung and muscle of
3-week-old MHV-susceptible C57Bl/6 mice (Fig. 3). While organs consist of different tissues and cell types, which might differ in regard to Ceacam1 expression, the average receptor amounts determined here reflect the number of potential entry sites for the virus within the organs. Brain and muscle had the smallest quantities of total Ceacam1 mRNA (mRNA all) [32 and 68 relative units (RU)], respectively. Intermediate amounts (210–890 RU) were found in spleen, lung, kidney and liver. Small intestine was characterized by a remarkably high number of potential entry sites for the virus within the organs. Brain and muscle had the smallest quantities of CEACAM1 mRNA. Only Sac(−) (185 RU) and 17Cl-1S (122 RU) cells with the highest Ceacam1 mRNA levels reached those in the mouse organs.

Cell surface-bound receptors may contribute to the efficiency of the initial rounds of infection, to the rate of viral spread within a tissue or organ and to the cytopathogenicity of infection. Secreted isoforms may have an inhibitory role in infection by neutralizing the virus or preventing cell-to-cell fusion. Comparison of our Ceacam1 data with the evidence of MHV replication published earlier (Fig. 3) yielded the following conclusions.

In vitro a broad range of cell surface receptor levels allowed virus infection. Comparison of the in vivo and in vitro data suggested that cells in all tested organs express sufficient amounts of membrane-bound receptor to make them susceptible to infection. For instance, cells in mouse brain, an organ with the lowest level of Ceacam1 transcripts, express on average twice as much receptor as the readily infectable L929 cell line.

The levels of the transcript for membrane-bound CEACAM1 did not correlate with the presence of virus in mouse organs during infection. For instance, muscle and brain have similar amounts of Ceacam1 transcripts, but muscle shows no signs of virus replication while the brain is permissive to virus infection. The same holds true for kidneys and lung (Fig. 3). Brain, spleen and small intestine, having the lowest, intermediate and highest Ceacam1 gene expression, respectively, were all characterized by a low level of virus replication. On the other hand, virus was most consistently found in the liver and lung, both organs with intermediate amounts of Ceacam1 transcripts.

The levels of the transcript for secreted CEACAM1 isoforms or the ratio of amounts of transcripts encoding secreted and membrane-anchored proteins also did not match MHV organ tropism. In addition, secreted receptor also could not explain the resistance of C2C12 and NIH.

Fig. 3. Ceacam1 gene expression and MHV infection in mouse organs. The graph on the left shows the relative amounts of Ceacam1 transcripts encoding membrane-anchored (mRNA TM+) and secreted (mRNA TM−) isoforms in the organs of C57Bl/6 mice determined as described in the legend to Fig. 2. The table on the right summarizes published results obtained with the use of: 1, immunofluorescence microscopy (IFM) of CEACAM1 (Godfraind et al., 1995); 2, 3, CEACAM1 IFM and Western blot analysis (Hirai et al., 2010), (Blau et al., 2001); 4, 5, RT followed by semi-quantitative PCR of Ceacam1 transcripts (Yokomori & Lai, 1992), (Han et al., 2001); 6, RT-qPCR of Ceacam1 transcripts (Hirai et al., 2010); 6, IFM of MHV proteins (Barthold & Smith, 1984); 7, pathology and MHV titration (Lavi et al., 1986); 8, live imaging of MHV replication (Raaben et al., 2009). These data were obtained for CD-1, C57BL/6 and BALB/c mice, which have similar susceptibility to MHV infection. DNF, Data not found.
3T3 cells to virus-induced cell damage as both its quantities and ratios fall within the ranges found in cells with cytopathogenic infection.

The extent of receptor exposure and its involvement in interactions with neighbouring cells will influence the actual number of sites available for virus binding. This factor, which is determined by the specific architecture of an organ, together with the other, yet unknown, factors modulating virus entry and the intracellular phase of virus reproduction (Bender et al., 2010; Slobodskaya et al., 2008; Taguchi & Hirai-Yuki, 2012) plus the local innate immunity profiles (Zhao et al., 2011) most probably define the tissue and organ tropism of MHV.

Acknowledgements

We are grateful to Stuart Siddell and Stanley Sawicki for 17Cl-1S cells and to Kathryn Holmes for CC1 mAb. We thank our colleagues Peter Bredenbeek and Tim Dalebout for their help with animal experiments.

References

