Severe acute respiratory syndrome coronavirus papain-like protease suppressed alpha interferon-induced responses through downregulation of extracellular signal-regulated kinase 1-mediated signalling pathways

Shih-Wein Li,1,2 Chien-Chen Lai,2,3 Jia-Fong Ping,1 Fuu-Jen Tsai,3 Lei Wan,3 Ying-Ju Lin,3 Szu-Hao Kung4 and Cheng-Wen Lin1,5,6

Correspondence
Cheng-Wen Lin
cwlin@mail.cmu.edu.tw
Chien-Chen Lai
lailai@dragon.nchu.edu.tw

Received 15 November 2010
Accepted 21 January 2011

1Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, ROC
2Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, ROC
3Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
4Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan, ROC
5Clinical Virology Laboratory, Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
6Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan, ROC

Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLpro), a deubiquitinating enzyme, reportedly blocks poly I:C-induced activation of interferon regulatory factor 3 and nuclear factor kappa B, reducing interferon (IFN) induction. This study investigated type I IFN antagonist mechanism of PLpro in human promonocytes. PLpro antagonized IFN-α-induced responses such as interferon-stimulated response element- and AP-1-driven promoter activation, protein kinase R, 2'-5'-oligoadenylate synthetase (OAS), interleukin (IL)-6 and IL-8 expression, and signal transducers and activators of transcription (STAT) 1 (Tyr701), STAT1 (Ser727) and c-Jun phosphorylation. A proteomics approach demonstrated downregulation of extracellular signal-regulated kinase (ERK) 1 and upregulation of ubiquitin-conjugating enzyme (UBC) E2-25k as inhibitory mechanism of PLpro on IFN-α-induced responses. IFN-α treatment significantly induced mRNA expression of UBC E2-25k, but not ERK1, causing time-dependent decrease of ERK1, but not ERK2, in PLpro-expressing cells. Poly-ubiquitination of ERK1 showed a relationship between ERK1 and ubiquitin proteasome signalling pathways associated with IFN antagonism by PLpro. Combination treatment of IFN-α and the proteasome inhibitor MG-132 showed a time-dependent restoration of ERK1 protein levels and significant increase of ERK1, STAT1 and c-Jun phosphorylation in PLpro-expressing cells. Overall results proved downregulation of ERK1 by ubiquitin proteasomes and suppression of interaction between ERK1 and STAT1 as type I IFN antagonist function of SARS-CoV PLpro.

INTRODUCTION

Severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is a novel pandemic virus causing highly contagious respiratory disease with approximately a 10% mortality rate (Hsueh et al., 2004; Lee et al., 2003; Tsang et al., 2003). Pathology entails bronchial epithelial denudation, loss of cilia, multinucleated syncytiatal cells, squamous metaplasia and transendothelial migration of monocytes/macrophages and neutrophils into lung tissue (Hsueh et al., 2004; Nicholls et al., 2003). Haematological examination reveals lymphopenia, thrombocytopenia and
leukopenia (Wang et al., 2004b; Yan et al., 2004) accompanied by rapid elevation in serum of inflammatory cytokines like gamma interferon (IFN-γ), interleukin (IL)-18, transforming growth factor beta, IL-6, IFN-gamma-inducible protein-10, monocyte chemoattractant protein-1 (MCP-1), monokine induced by IFN-gamma and IL-8, which stimulate recruitment of neutrophils, monocytes, and immune responder cells like natural killer (NK), T- and B-cells into the lungs and other organs (He et al., 2006; Huang et al., 2005; Wong et al., 2004).

SARS-CoV genome is a 30 kb positive-stranded RNA with a 5′ cap and a 3′ poly(A) tract that contains 14 ORFs (Marra et al., 2003; Rota et al., 2003; Ziebuhr, 2004). The 5′ proximal and largest of these ORFs encodes two large overlapping replicase polyproteins 1a and Lab (~ 450 and ~750 kDa, respectively) processed to produce non-structural proteins (nsps) primarily involved in RNA replication. Two specific embedded proteases, papain-like (PLpro) and 3C-like (3Cpro), mediate processing of 1a and lab precursors into 16 nsps (termed nspl–16).

PLpro, located within nsp3, cleaves at nsp1/2, nsp2/3 and nsp3/4 boundaries using consensus motif LXGG (Barretto et al., 2005; Lindner et al., 2005; Thiel et al., 2003), along with consensus cleavage sequence of cellular deubiquitinating enzymes. Modelling and crystal structures reveal correlation between SARS-CoV PLpro and the herpes virus-associated ubiquitin-specific protease, indicating potential deubiquitinating activity (Ratia et al., 2006; Sulea et al., 2005) observed in in vitro cleavage assays (Barretto et al., 2005; Lindner et al., 2005). Interestingly, one such in vitro deubiquitination assay measured the cleavage of ubiquitin-like protein, interferon (IFN)-induced 15 kDa protein (ISG15), from an ISG15-fusion protein, suggesting de-ISGylation by PLpro as a mechanism by which SARS-CoV inactivates IFN-α/β-induced innate immune response.

SARS-CoV infection does not induce type I IFNs in cell culture (Spiegel et al., 2005). Recent reports reveal PLpro inhibiting the phosphorylation of interferon regulatory factor 3 (IRF-3) and type I IFN synthesis (Devaraj et al., 2007) and antagonizing both IRF-3 and nuclear factor kappa B (NF-kB) signalling pathways (Friel et al., 2009). Still, the mechanisms of type I IFN antagonism by which SARS-CoV PLpro does this remain unclear. Type I interferons (IFNs, IFN-α, IFN-β and IFN-ω) mediate a wide range of biological activities: antiviral activity, immune response, differentiation, cell growth and apoptosis (Biron, 2001). IFN-α/β binds to a common heterodimeric receptor composed of IFN-α/β receptor 1 (IFNAR1) and IFN-α/β receptor 2 (IFNAR2), then activates Janus kinase (JAK) family plus signal transducers and activators of transcription (STATs) family (Tang et al., 2007). Phosphorylation of STAT1 at tyrosine 701 by JAK1 is required for STAT1–STAT2 heterodimer formation and nuclear translocation (Banning & Reich, 2004). Phosphorylation of STAT1 at serine 727 by extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) facilitates interaction of STAT1 with basal transcription machinery for full expression of antiviral genes like protein kinase R (PKR), 2′-5′-oligoadenylate synthetase (OAS) and IFN-stimulated gene 15 (ISG15) (Deb et al., 2003; Uddin et al., 2002). Currently, IFN-α is also a widely used cytokine for treating human solid and haematologic malignancies (Tagliaferri et al., 2005). IFN-α-mediated anti-tumour effect correlates with activation of JAK–STAT signalling pathway, resulting in upregulation of Fas/FasL and Jnk1/p38 stimulation signalling pathways. Escape mechanisms of IFN-α-mediated anti-tumour effect are likewise reported, e.g. EGF-mediated Ras/Raf/ERK1/2-dependent pathway, Akt- and NF-κB-dependent pathways and STAT3/Pi3K-mediated signalling (Tagliaferri et al., 2005). Some key regulators of signal transduction, e.g. JAK1, STAT1, ERK1 are demonstrably modified by ubiquitin conjugation (Malakhov et al., 2003; Lu & Hunter, 2009), with over 100 ubiquitin-conjugated proteins encompassing diverse cellular pathways identified in antiviral innate immune responses (Giannakopoulos et al., 2005; Zhao et al., 2005), e.g. NF-κB-inducing kinase, critical regulator of non-canonical NF-κB pathway, is ubiquitinated and degraded by RING finger E3 ligases (Varfolomeev et al., 2007). With SARS-CoV PLpro as a deubiquitinating enzyme, this points to specifically disrupting signal transduction of innate immune system against SARS-CoV infection.

Investigating possible effect of PLpro on the responses to type I IFNs is vital to the understanding of SARS pathogenesis. This study first demonstrated stable expression of SARS-CoV PLpro significantly inhibited IFN-α-induced responses like interferon-stimulated response element (ISRE)- and AP-1-driven promoter activation, gene expression of PKR, 2′-5′-OAS, IL-6 and IL-8, and phosphorylation of STAT1 and c-Jun. Downregulation of ERK1 was identified by comparative proteomic analysis of PLpro-expressing cells against control cells with respect to IFN-α.

RESULTS

Expression of the SARS-CoV PLpro in human promonocytes

To characterize the effect of SARS-CoV PLpro on the intracellular innate immune response, human promonocyte HL-CZ (human promonocyte cell line) cells were co-transfected with the plasmid pSARS-CoV PLpro [expressing PLpro with herpes simplex virus (HSV) epitope tag] or empty control vector and GFP reporter plasmid followed by 2 weeks of treatment with G418 to select stably
transfected cells. Expression of PLpro was detected by immunofluorescent staining (Fig. 1a) and Western blotting (Fig. 1b), with vector-derived His-tag found in both empty vector- and pSARS-CoV PLpro-transfected cells and HSV-tag detected only in pSARS-CoV-PLpro-transfected cells. Western blotting of transfected cells' lysates with anti-HSV-tag antibodies revealed a 60 kDa band in pSARS-CoV-PLpro-transfected cells (Fig. 1b), but not in empty vector-transfected cells.

To determine if expressed PLpro was active, proteolytic activity in cell lysates was assayed by in vitro trans-cleavage, with HRP containing the LXGG motif recognized by PLpro as substrate. Fig. 1(c) shows significant reduction in HRP enzyme activity in the reaction containing lysates of PLpro-expressing cells, but not in the reaction with lysates from vector control cells. Lysates of PLpro-expressing cells also exhibited time-dependent trans-cleavage activity. SARS-CoV PLpro expressed in human promonocyte cells was thus enzymically active.

Inhibition of PLpro on IFN-α-induced ISRE- and AP-1-mediated activation

To test the effect of SARS-CoV PLpro on ISRE-mediated responses to IFN-α, activity of ISRE-driven reporter and

Fig. 1. Expression of SARS-CoV PLpro in human promonocyte HL-CZ cells. Cells transfected with pcDNA3.1 (control vector) plus pEGFP-N1 or pSARS-CoV-PLpro plus pEGFP-N1 were selected by a 2 week incubation with G418. The HSV-tag fusion protein was detected using immunofluorescence staining of anti-HSV tag antibody and rhodamine-conjugated anti-mouse IgG antibody (a). Lysates from cells transfected with pcDNA3.1 plus pEGFP-N1 (lane 1) or pSARS-CoV-PLpro plus pEGFP-N1 (lane 2) were analysed by 10% SDS-PAGE prior to blotting (b). The blot's upper half of was probed with anti-HSV antibody, the lower with anti-β actin antibody as internal control. Trans-cleavage activity of SARS-CoV PLpro in transfected cell lysates was further analysed (c). Following incubation of lysates from 10⁶ PLpro-expressing cells and control vector cells with substrate HRP, residual HRP activity was measured as a mean of three independent experiments; error bars show SEM.
mRNA expression of ISRE-driven gene PKR in empty vector controls and PLpro-expressing cells were examined by dual luciferase reporter assay system (Fig. 2a) and quantitative real-time RT-PCR (Fig. 2b). Cells were co-transfected with cis-reporter plasmid containing firefly luciferase under the control of ISRE and an internal control reporter plasmid that constitutively expressed Renilla luciferase. After treatment with IFN-α for 4 h, expression of firefly luciferase was determined and normalized to Renilla luciferase expression. Fig. 2(a) plots vector control and PLpro-expressing cells’ dose-dependent transcriptional activity of the ISRE promoter by IFN-α. ISRE promoter-driven luciferase activity in PLpro-expressing cells was half of that in vector control cells. The mRNA expression of specific ISRE-driven gene PKR was analysed in both types of cells in the absence or presence of IFN-α, using quantitative real-time RT-PCR assays (Fig. 2b). Induction of PKR by IFN-α was approximately sevenfold lower in PLpro-expressing cells than in control vector cells. Since the endogenous PKR promoter contains not only the ISRE element but also kinase-conserved sequence element for both basal and IFN-inducible PKR promoter activity (Samuel, 2001), the other specific ISRE promoter-driven gene 2’-5’-OAS was further analysed (Fig. 2c). Induction of 2’-5’-OAS by IFN-α was sixfold lower in PLpro-expressing cells than in vector controls. Results confirmed the antagonism of IFN-α-induced ISRE-mediated gene expression by PLpro.

Subsequently, the effect of SARS-CoV PLpro on AP-1-mediated responses to IFN-α was tested (Fig. 3). Activity of AP-1 enhancer in response to IFN-α was next determined by transient transfection with plasmid vector containing luciferase under the control of the AP-1 enhancer. Fig. 3(a) shows luciferase activity significantly induced in a dose-dependent manner in control vector cells by IFN-α, but induction using the

![Fig. 2](image_url). Effect of PLpro on ISRE-mediated gene expression in response to IFN-α. (a) Vector control cells and PLpro-expressing cells were transiently co-transfected with reporter plasmid containing firefly luciferase under the control of the ISRE and an internal control reporter pRLuc-C1 that constitutively expressed Renilla luciferase. After 4 h IFN-α treatment, firefly luciferase and Renilla luciferase were measured and firefly luciferase activity normalized to Renilla luciferase activity, as reported. Each bar is the mean of three independent experiments; error bar is SEM. The mRNA expressions of ISRE-driven gene PKR (b) and 2’-5’-OAS (c) in vector control cells and SARS PLpro-expressing cells untreated or treated was measured by quantitative real-time PCR. Relative fold levels of PKR or 2’-5’-OAS mRNA level appear as ratio of PKR or 2’-5’-OAS mRNA/GAPDH mRNA. Each bar graph is the mean of three independent experiments; error bars represent SEM.
same level of IFN-α totally absent in PLpro-expressing cells. These results indicate SARS-CoV PLpro-mediated suppression and AP-1-mediated promoter activity in response to IFN-α. Upon stimulation with IFN-α, a 15-fold increase in IL-6 mRNA was induced in vector control cells; no significant induction occurred in PLpro-expressing cells (Fig. 3b). Since the AP-1 element was also required for the IL-8 expression (Hoffmann et al., 2002), thus IL-8 mRNA levels in response to IFN-α were also measured (Fig. 3c). Levels of IL-8 mRNA were 3.5-fold higher in both unstimulated and stimulated vector controls than in unstimulated and stimulated PLpro-expressing cells (Fig. 3c), suggesting interference by PLpro with basal level IL-8 mRNA transcription. AP-1 promoter activity and driven gene expression indicated SARS-CoV PLpro as significantly inhibiting mRNA expression of AP-1-mediated genes.

Downregulation of IFN-α-induced ERK1-mediated signalling by PLpro

For a global perspective mechanism of type I IFN antagonism by SARS-CoV PLpro, differential protein expression in vector control and PLpro-expressing cells in the absence or presence of IFN-α was analysed by two-dimensional (2D) gel electrophoresis and nanoscale capillary liquid chromatography/electrospray ionization Q-TOF MS to identify differentially regulated proteins. In Fig. 4(a), downregulated protein ERK1 and upregulated ubiquitin-conjugating enzyme (UBC) E2-25K appeared in 2D gels of IFN-α-treated PLpro-expressing cells, and then identified by trypsin digestion and NanoLC Trap Q-TOF MS analysis. ERK1 showed a Mascot score of 109, sequence coverage of 14%, and two matched peptides; UBC E2-25K showed a Mascot score of 248, sequence coverage of 59%, and four matched peptides. Peptide peaks from Q-TOF MS analysis from two representative spots of ERK1 and UBC.

Fig. 3. Effect of PLpro on AP-1-mediated gene expression in response to IFN-α. (a) Vector control and PLpro-expressing cells were transiently co-transfected with reporter plasmid containing AP-1-driven firefly luciferase and an internal control reporter pRLuc-C1 that constitutively expressed Renilla luciferase. After 4 h treatment with IFN-α, AP-1-driven firefly luciferase and Renilla luciferase were measured and firefly luciferase activity normalized to Renilla luciferase activity is reported. Each bar is the mean of three independent experiments; error bar is SEM. In addition, the mRNA expressions of AP-1-driven genes IL-6 (b) and IL-8 (c) in vector control cells and SARS PLpro-expressing cells untreated or treated was measured by quantitative real-time PCR. Relative fold levels of IL-6 or IL-8 mRNA level were presented as the ratio of IL-6 or IL-8 mRNA/GAPDH mRNA. Each bar on the graph is the mean of three independent experiments; error bars represent SEM.
E2-25K (Fig. 4b, c), respectively. ERK1 in particular is reported in several biological pathways (mitogen-activated protein kinase kinase, cytokine-mediated inflammation, IFN signalling pathways) and thus could play an important role in the mechanism of IFN-α antagonism by PLpro.

Upregulation of UBC E2-25K of ubiquitin proteasome pathways by PLpro

Quantitative RT-PCR was employed to determine expression levels of ERK1 and UBC E2-25K in PLpro-expressing and vector control cells in the absence or presence of IFN-α (Fig. 5). Amount of ERK1 mRNA showed no difference between vector control and PLpro-expressing cells, whether treated with IFN-α or not (Fig. 5a). Relative level of UBC E2-25K mRNA in PLpro-expressing cells was markedly higher than that in vector controls, with or without IFN-α treatment (Fig. 5b), proving that SARS-CoV PLpro activates the ubiquitin-proteasome system in human promonocyte cells. To compare ERK1 protein levels in vector control and PLpro-expressing cells in the presence or absence of IFN-α, ERK1 and ERK2 were measured by
Western blots with anti-p44/p42 (ERK1/2) mAb (Fig. 6a). Western blotting showed 42 kDa ERK2 protein levels roughly similar in vector control and PLpro-expressing cells, whereas the protein level of 44 kDa ERK1 in PLpro-expressing cells was near 50% of that in controls (determined by densitometry normalized to β-actin protein control in each sample) (Fig. 6a, lanes 1–2). IFN-α treatment caused time-dependent reduction of ERK1, but not ERK2, in PLpro-expressing cells (Fig. 6a, lanes 4 and 6). Results confirmed data of 2D/MALDI TOF MS, which showed definite reduction of ERK1 in PLpro-expressing cells in response to IFN-α.

Since PLpro-expressing cells have no difference in mRNA amount, but a significant reduction of ERK1 protein levels by IFN-α, we suggest that upregulation of UBC E2-25k in PLpro-expressing cells could increase ubiquitination on ERK1, enhancing ERK1 degradation by IFN-α treatment. To test the hypothesis, ERK1 immunoprecipitation followed by Western blot probed with anti-ubiquitin antibodies was conducted in the absence or presence of IFN-α (Fig. 6b), revealing that ERK1 conjugated with different sizes of poly-ubiquitin chains, i.e. molecular sizes of 52, 60, 68, 76 and 84 kDa. Higher level of ERK1 ubiquitination was found in PLpro-expressing cells (Fig. 6b, lane 2) than in vector control cells (Fig. 6b, lane 1). Moreover, IFN-α treatment significantly reduced the level of ERK1 ubiquitination in PLpro-expressing cells (Fig. 6b, lane 4), not in vector controls (Fig. 6b, lane 3).

To test the correlation between upregulation of ubiquitin proteasome activity and downregulation of ERK1 in PLpro-expressing cells, the proteasome inhibitor MG-132 was added to analyse changes of ERK1 and ERK2 using Western blot assays with anti-p44/p42 (ERK1/2) mAb (Fig. 6c). Treatment with both IFN-α and the proteasome inhibitor MG-132 caused time-dependent increases of ERK1 and ERK2, in PLpro-expressing cells (Fig. 6c, lanes 2, 4, 6 and 8). The higher expression level of ERK2 than ERK1 was consistently observed in vector control and PLpro-expressing cells in responses to treatment with/without both IFN-α and the proteasome inhibitor MG-132. The increase of ERK1 level in PLpro-expressing cells correlated with treatment of the proteasome inhibitor MG-132, being not compensated by ERK2. After 1 h treatment with both IFN-α and MG-132, the overall amount of ERK1 in PLpro-expressing cells was equal to that in vector control cells (Fig. 6c, lanes 7 and 8). Results indicate that the proteasome inhibitor MG-132 blocked the escape of IFN-α-induced response by ERK1 degradation in PLpro-expressing cells, along with SARS-CoV PLpro enhancing ERK1 degradation by upregulating ubiquitin proteasome pathways in response to IFN-α, being associated with inhibiting IFN-α-induced ISRE- and AP-1 promoter activation and IFN-α-stimulated gene expression.

Inhibition of ubiquitin proteasome activity restored activation of IFN-α-induced ERK-mediated signalling in PLpro-expressing cells

To examine the effects of ubiquitin proteasome upregulation on ERK1-mediated signalling, the proteasome inhibitor MG-132 was added to analyse changes of the ERK1-mediated signalling pathway. Phosphorylation of ERK1, STAT1 and c-Jun in PLpro-expressing cells and vector control cells was subsequently analysed by Western blots with phosphorylation site-specific antibodies (Fig. 7). IFN-α treatment caused time-dependent ERK1 phosphorylation in vector controls (Fig. 7a, lanes 1, 3, 5 and 7), but only a transient period of ERK1 phosphorylation in PLpro-expressing cells (Fig. 7a, lane 4), probably due to lower ERK1 protein levels via degradation by ubiquitin-proteasome pathway in PLpro-expressing cells following IFN-α treatment (Fig. 6). Consistent with this hypothesis, treatment with both IFN-α and the proteasome inhibitor MG-132 restored IFN-α-induced activation of ERK1 in a time-dependent manner in PLpro-expressing cells (Fig. 7b, lanes 2, 4, 6 and 8). Treatment with IFN-α or both IFN-α
Fig. 6. Protein amount and ubiquitination level of ERK1 in vector control cells and PLpro-expressing cells. (a) Vector control cells and PLpro-expressing cells were treated with IFN-α (3000 U ml\(^{-1}\)) for 30 or 60 min. Cell lysates were Western blotted and probed with anti-ERK1/2 or anti-β-actin antibody as an internal control. (b) Vector control cells and PLpro-expressing cells were treated with or without IFN-α (3000 U ml\(^{-1}\)) for 60 min. Cell lysates were also immunoprecipitated with anti-ERK1 mAb, followed by Western blotting probed with either anti-ubiquitin or anti-ERK1 antibody. (c) Vector control cells and PLpro-expressing cells were treated with IFN-α and the proteosome inhibitor MG-132 (20 μM) for 10, 30 or 60 min. Cell lysates were Western blotted and probed with anti-ERK1/2 or anti-β-actin antibody as an internal control.
and the proteasome inhibitor MG-132 had no detectable band of phospho-ERK2 in vector control and PLpro-expressing cells. Subsequently, PLpro expression suppressed phosphorylation of STAT1 at Tyr701 and Ser727 sites in resting cells and in response to IFN-α treatment (Fig. 7a, lanes 4, 6 and 8). Treatment with the proteasome inhibitor MG-132 also significantly increased phosphorylation of STAT1 at Tyr701 and Ser727 sites in PLpro-expressing cells induced with IFN-α (Fig. 7b, lanes 4, 6 and 8). Moreover, phosphorylation of transcriptional factor c-Jun was assessed to find that the level of c-Jun phosphorylation was similar in both types of cells. Yet IFN-α treatment reduced c-Jun phosphorylation, meanwhile treatment with both IFN-α and MG-132 also significantly increased c-Jun phosphorylation in PLpro-expressing cells (Fig. 7a, b, lanes 4, 6 and 8). As expected, if PLpro-induced degradation of ERK1 suppresses STAT1 and c-Jun activation, inhibition of ubiquitin proteasome function with MG-132 heightened IFN-α-induced activation of ERK1-mediated signalling in PLpro-expressing cells.

Correlation of ERK1 phosphorylation with STAT1 signalling pathways

To confirm the effect of ERK1 phosphorylation on STAT1 signalling, inhibition of PD098059 (an ERK1/2 inhibitor) on ERK1 and STAT1 phosphorylation was analysed by Western blotting (Fig. 8). PD098059 treatment had inhibitory effects on IFN-α-induced ERK1 phosphorylation in vector control cells and PLpro-expressing cells (Fig. 8a, lanes 5–7; Fig. 8b, lanes 5–7). Importantly, PD098059 treatment also manifests inhibitory effects on STAT1 phosphorylation at Ser727, but not Tyr701 in vector control cells and PLpro-expressing cells in response to IFN-α.
IFN-α treatment (Fig. 8a, lanes 5–7; Fig. 8b, lanes 5–7). In addition, effects of PD098059 treatment on IFN-α-induced ISRE promoter-driven gene expression were further investigated using real-time RT-PCR (Supplementary Fig. S1, available in JGV Online). PD098059 treatment starkly reduced IFN-α-induced expression of 2'-5'-OAS in vector control and PLpro-expressing cells (Supplementary Fig. S1). Results confirmed a link between ERK1 activation and STAT1 signalling as the antagonism of IFN-α-induced ISRE-mediated gene expression by PLpro.

DISCUSSION

SARS-CoV does not induce type I IFN in cell culture, which may be crucial to pathogenesis of this virus. This study focused on one SARS-CoV protein, PLpro protease, earlier reported to have antagonistic activity in innate immune responses including synthesis of IFNs and cytokines (Devaraj et al., 2007; Frieman et al., 2009). We first demonstrated stable SARS-CoV PLpro expression in human promonocyte cells as well as inhibition of IFN-α-induced ISRE- and AP-1-driven promoter activity and reduction of IFN-stimulated gene expression (Figs 2 and 3). Results concurred with previous findings: SARS-CoV PLpro protein inhibited activity of IFN-β, ISRE and NF-κB promoters induced by poly I:C (Devaraj et al., 2007; Frieman et al., 2009). The antagonistic mechanism of SARS-CoV PLpro on these activities is controversial (Devaraj et al., 2007; Frieman et al., 2009). Devaraj et al. (2007) demonstrated PLpro interacting with IRF-3, blocking phosphorylation and nuclear translocation of IRF-3 and disrupting activation of type I IFN responses. Frieman et al. (2009) found PLpro not directly binding with IRF-3 or inhibiting in vitro phosphorylation of IRF-3.

This study used the proteomic approach to detect changes in protein expression in PLpro-expressing cells in the presence or absence of IFN-α (Fig. 4). PLpro expression in human promonocyte cells stimulated mRNA expression of UBC E2-25K (Fig. 5b), which could support the increase of protein level of UBC E2-25K in 2D gels (Fig. 4). PLpro expression caused 50 % decrease of ERK1, but not ERK2, in PLpro-expressing cells compared with vector controls (Fig. 6a), being associated with ubiquitin-dependent proteosomal degradation of ERK1, as confirmed by poly-ubiquitination of ERK1 and treatment with the proteosome inhibitor MG-132 (Fig. 6b, c). IFN-α treatment enhanced time-dependent manner of ERK1 downregulation, but the proteosome inhibitor MG-132 time-dependently restored IFN-α-enhanced degradation of ERK1 in PLpro-expressing cells, but not vector controls (Fig. 6a, c). With ERK1/2 signalling regulated by ubiquitin-proteosome system via degradation of ERK1/2 and the upstream MAP kinase kinase kinase 1 (MEKK1) by ubiquitination (Laine & Ronai, 2005; Lu et al., 2002), those reports led us to identify ERK1 ubiquitination level in vector control and PLpro-expressing cells with or without IFN-α treatment (Fig. 6b). Interestingly, PLpro expression significantly increased ERK1 ubiquitination with poly-ubiquitin chains compared with vector control cells (Fig. 6b, lanes 1–2), while IFN-α treatment decreased ubiquitinated levels and protein amounts of ERK1 in PLpro-expressing cells, but not in vector control cells (Fig. 6b, lanes 3–4). Treatment with the proteosome inhibitor MG-132 restored protein amounts of ERK1 (Fig. 6c) and IFN-α-induced activation of ERK1-mediated signalling in PLpro-expressing cells (Fig. 8), in concordance with prior studies, i.e. ERK1/2 signalling regulated by ubiquitin-proteasome system via degradation of ERK1/2 and upstream MEKK1 by ubiquitination (Laine & Ronai, 2005; Lu et al., 2002). Proteomic analysis identified downregulation of ERK1 that was ubiquitinated and degraded by upregulation of ubiquitin proteasome pathways in PLpro-expressing cells, being responsible for the mechanism of IFN-α antagonism by SARS-CoV PLpro.

The treatment with the proteosome inhibitor MG-132 reversed this inhibition of IFN-α-induced ERK1-mediated signalling by PLpro (Fig. 7), indicating a significant correlation between ERK1 and STAT1 in PLpro-expressing cells in response to IFN-α. Results concurred with prior studies, with phosphorylation at Ser727 of STAT1 by active ERK1 involved in IFN-α/β-induced response (Wang et al., 2004a) and IFN-γ inflammatory response (Lombardi et al., 2008; Matsumoto et al., 2005). In addition, downregulation of ERK1 in PLpro-expression cells correlated with suppression of AP-1-driven luciferase activity, IL-6 and IL-8 mRNA expression and c-Jun phosphorylation in responses to IFN-β (Figs 3 and 7). Importantly, we confirmed the correlation of ERK1 and STAT1 signalling pathways by treatment of PD098059 (an ERK1/2 inhibitor) (Fig. 8). PD098059 treatment inhibited IFN-α-induced ERK1 and STAT1 phosphorylation in vector control and PLpro-expressing cells, as well as IFN-α-induced expression of 2'-5'-OAS in vector control and PLpro-expressing cells (Supplementary Fig. S1). In addition, the other ERK1/2 inhibitor U0126 was used to test the correlation between ERK1/2 and STAT1. ERK1/2 inhibitor U0126 significantly inhibited IFN-α-induced phosphorylation of STAT1 at Ser727 in vector control cells and PLpro-expressing cells (Supplementary Fig. S2, available in JGV Online). ERK1/2-mediated signalling proves elemental in EGF-induced survival response to antagonize IFN-α-induced apoptosis of cancer cells (Caraglia et al., 2003). Downregulation of ERK1-mediated signalling by PLpro might thus be considered an escape mechanism of SARS-CoV against type I IFNs. Activation of ERK1-mediated signalling may improve innate immune response against SARS-CoV, being alternative targets for development of SARS therapy.

We also demonstrated the reduction of ERK1 protein level in human promonocyte cells 24 h post-infection with human coronavirus NL63 (HCoV-NL63) and reversion of ERK1 protein level in HCoV-NL63-infected cells after a 24 h incubation with IFN-α and the proteasome inhibitor MG-132 (Supplementary Fig. S3, available in JGV Online).
In addition, the reduction of IFN-α-induced phosphorylation of both ERK1 and STAT1 at Ser727 was confirmed in human lung adenocarcinoma epithelial A549 cells expressing SARS-CoV PLpro compared with vector control (Supplementary Fig. S4, available in JGV Online). Surprisingly, ERK2 that had consistently higher expression level than ERK1 in vector control and PLpro-expressing cells showed fewer amounts of protein level and IFN-α-induced phosphorylation in PLpro-expressing cells than vector control cells (Figs 6a, 7a and 8, Supplementary Fig. S4). The treatment with the proteasome inhibitor MG-132 reversed the amounts of ERK2 protein and the inhibition of IFN-α-induced ERK2 phosphorylation in PLpro-expressing cells (Figs 6c and 7b). Besides ERK1, ERK2 might be involved in type I IFN antagonism by SARS-CoV PLpro. ERK1 and ERK2 have approximately 85% of amino acid identity co-expressed in virtually all tissues but with remarkably variable relative abundance, ERK2 as the predominant isoform in brain and haematopoietic cells (Millella et al., 2003; Pages & Pouyssegur, 2004). Recent evidence suggests possible quantitative difference in ERK1 and ERK2 dynamics that could have a significant role in their regulation. Ecotypic expression of ERK1, albeit not ERK2, attenuates Ras-dependent tumour formation in nude mice (Vantaggiato et al., 2006). The properties of their cytoplasmic-nuclear trafficking showed ERK1 shuttles between nucleus and cytoplasm at a much slower rate than ERK2, correlating with reduced capability of ERK1 to carry proliferative signals to the nucleus (Marchi et al., 2008). Constitutive activation of ERK2, but not ERK1, is critical for the acquired resistance to Imatinib Mesylate in chronic myelogenous leukaemia management (Aceves-Luquero et al., 2009). In addition to cancers, Ebola virus envelope glycoprotein reduced phosphorylation and kinase activity of ERK2, but not ERK1, correlating with induction of cell death (Zampieri et al., 2007). Vaccinia virus M2L protein blocks ERK2 phosphorylation, inhibiting virus-induced NF-κB activation (Gedey et al., 2006). Type I IFN antagonism of SARS-CoV PLpro via ERK1 downregulation might thus be a unique mechanism useful in developing therapeutic agents against SARS-CoV infection.

In conclusion, stable SARS-CoV PLpro expression significantly suppressed IFN-α-induced responses. Upregulation of ubiquitin-proteasome pathway by SARS-CoV PLpro correlated with increase of ERK1 ubiquitination. IFN-α treatment elicited ERK1 degradation, then downregulated ERK1-mediated signalling in PLpro-expressing cells, resulting in negative regulation of STAT1 and AP-1 signalling pathways. Importantly, inhibition of ubiquitin proteasome function with MG-132 restored IFN-α-induced phosphorylation of ERK1, STAT1 and c-Jun, all suppressed by SARS-CoV PLpro. PD098059 treatment confirmed linkage between ERK1 activation and STAT1 signalling pathways as type 1 IFN antagonism by PLpro. Moreover, the study may provide novel insight into the molecular mechanism of IFN antagonism by SARS CoV PLpro.

METHODS

Cell culture and transfection. The SARS-CoV PLpro gene, located between nt 4507–5840 of the SARS-CoV TW1 strain genome (GenBank accession no.AY291451), was amplified by RT-PCR from genome RNA template, using primers 5′-CTCCGAAATCTCAACTCT- TCTAAAATGAGCGGCTTTGTC-3′ and 5′-GAGGCTCAGATCCTC- TGGTTCTGGAGCGGATTTGCCTGTAACACAGGGTGTTGATGTG-3′. Forward primer contained an EcoRI restriction site, reverse primer included an XhoI restriction site and HSV epitope tag. Amplified RT-PCR product was cloned into pcDNA3.1/His C vector (Invitrogen), the resulting construct was named pSARS-CoV PLpro. The pSARS-CoV PLpro (4.5 μg) plus indicator vector pEGFP-N1 (0.5 μg) (Clontech) or pcDNA3.1 empty vector plus pEGFP-N1 were transfected into HL-CZ cells with GenePorter reagent. As per manufacturer’s direction (Gene Therapy Systems), transfected cells were incubated for 5 h with a mixture of plasmid DNA and GenePorter reagent, then maintained in RPMI 1640 medium containing 20% FBS. For the selection of the stably transfected cell line, cells were incubated with RPMI 1640 medium containing 10% FBS and 800 μg G418 ml⁻¹. PLpro expression was detected by Western blotting of transfected cell lysates, using anti-HSV Tag mAb (Novagen) as a probe.

In vitro trans-cleavage activity of SARS-CoV PLpro. The protease activity in SARS-CoV PLpro-transfected cells was determined by spectrophotometrically following digestion of substrate HRP containing the LXG motif (Sigma). Transfected cell lysates (150 μl) were added to 150 μl of substrate reagent containing 0.01 μM HRP in 50 mM Tris/HCl. After 1, 2, 3 and 4 h incubation at 37°C, reaction mixtures were added to a 96-well plate and non-digested HRP activity was measured by adding chromogen solution containing 2,3′-azino-di-3-ethylbenzthiazoline-6-sulfonate and hydrogen peroxide. Relative trans-cleavage activity was calculated as 1 – (A405 PLpro)/(A405 no PLpro).

Transient transfections of cis-reporter plasmids for signalling pathway assays. Plasmid pSRE-Luc cis-reporter was purchased from Stratagene. SARS-CoV PLpro-expressing and empty vector control cells were transfected with cis-reporter plasmid indicated, plus internal control reporter plpLuc-C1 (BiologSignal Packard) using the GenePorter reagent. After 4 h incubation with or without IFN-α2 (Hoffmann-La Roche), activity of experimental firefly luciferase and internal control reporter Renilla luciferase was gauged by the Dual Luciferase Reporter Assay System (Promega) and TROPIX TR-717 Lumimeter (Applied Biosystems) described by Lin et al. (2008).

2D gel electrophoresis and protein spot analysis. For 2D gel electrophoresis, empty vector control cells and PLpro-expressing cells incubated for 3 days in the presence or absence of 3000 U IFN-α ml⁻¹ were harvested, washed twice with ice-cold PBS, and then extracted with lysis buffer containing 8 M urea, 4% CHAPS, 2% pH 3–10 non-linear (NL) IPG buffer (GE Healthcare), plus Complete, Mini, EDTA-free protease inhibitor mixture (Roche). After 3 h incubation at 4°C, cell lysates were centrifuged for 15 min at 16000 g. Protein concentration of resulting supernatant was gauged with the Bio-Rad Protein Assay (Bio-Rad), 100 μg of protein sample diluted with 350 μl of rehydration buffer (8 M urea, 2% CHAPS, 0.5% IPG buffer pH 3–10 NL, 18 mM DTT, 0.002% bromophenol blue), then applied to NL Immobiline DryStrips (17 cm, pH 3–10; GE Healthcare). First-dimensional isoelectric focus and second-dimensional electrophoresis were detailed in Lai et al. (2007), as was in-gel digestion to recover peptides from gel spots for nano-electrospray mass spectrometry.

Nanoelectrospray mass spectrometry, data interpretation and database search. Proteins in spots of interest were identified using an Ultimate capillary LC system (LC Packings) coupled to a QSTARXL quadrupole-time of flight (Q-TOF) mass spectrometer.
Western blotting and immunoprecipitation assays. To determine protein expression, lysates of PLpro-expressing cells and empty vector control cells incubated for 1 day in the presence or absence of 3000 U IFN-α ml⁻¹ were mixed 1:1 with 2 × SDS-PAGE sample buffer without 2-mercaptoethanol and boiled for 10 min. Proteins in the lysates were resolved by SDS-PAGE and transferred to nitrocellulose. Resulting blots were blocked with 5 % skimmed milk, then reacted with appropriately diluted antibodies, including rabbit anti-STAT1 (Cell Signalling), rabbit anti-phosho STAT1 (Ser727) (Abcam), rabbit anti-phospho STAT1 (Tyr701) (Abcam), anti-ERK1/2 mAb (Cell Signalling), anti-phospho-ERK1/2 mAb (Cell Signalling), rabbit anti-c-Jun (Abcam), rabbit anti-phospho c-Jun (Abcam) and anti-ubiquitin mAb (Zymed). Immune complexes were detected with HRP-conjugated goat anti-mouse or anti-rabbit IgG antibodies, followed by enhanced chemiluminescence detection (Amershams Pharmacia Biotech). To detect ubiquitination of ERK1, cell lysates were harvested and incubated with anti-ERK1 antibody for 4 h at 4 °C, followed by addition of protein A-Sepharose beads and additional 2 h of incubation. After collection by centrifugation, pellets were washed four times with NET buffer (150 mM NaCl, 0.1 mM EDTA, 30 mM Tris/HCl, pH 7.4); immunoprecipitated proteins were dissolved in 2 × SDS-PAGE sample buffer without 2-mercaptoethanol and boiled for 10 min. Proteins were resolved by SDS-PAGE and transferred to nitrocellulose. Resulting blots were blocked with 5 % skimmed milk and then probed with rabbit anti-ERK1 (Zymed) and anti-ubiquitin mAb (Zymed) followed by enhanced chemiluminescence detection.

Quantification of IFN-β mRNA using real-time RT-PCR. Total RNA was isolated from PLpro-expressing cells and empty vector control cells incubated for 4 h in the presence or absence of 3000 U IFN-α ml⁻¹, using PureLink Micro-to-Midi Total RNA Purification System kit (Invitrogen). cDNA was synthesized from 1000 ng of total RNA, using oligonucleotide d(T) primer and SuperScript III reverse transcriptase kit (Invitrogen). To gauge expression in response to IFN-α, a two-step RT-PCR using SYBR Green I was used. Oligonucleotide primer pairs were (i) forward primer 5'-CAACCA-GGCGTTGATCGTATTTC-3' and reverse primer 5'-ATCCAGGGG-GCGCCGCTCA-3' for human PKR, (ii) forward primer 5'-GATGTTGCTGCTGCTTT-3' and reverse primer 5'-TTGGGTTAGGGT-TTATACTGCTG-3' for human 2'-5'-OAS, (iii) forward primer 5'-GATTGATTGCTGCTGCTTAATGGT-3' and reverse primer 5'-AGTGGTATTATCATGGAACATAA-3' for human IL-6, (iv) forward primer 5'-CGATGCTGATGCTGAAGAAA-3' and reverse primer 5'-TGTTAATCTTGCACCCTTCTTTACCAAAA-3' for human IL-10, (v) forward primer 5'-CTTCCCTGGGAGCACATC-3' and reverse primer 5'-GTGGCCCGTCTCTGATGA-3' for human ERK1, and (vi) forward primer 5'-GCAATGACTCTCGGCAAGG-3' and reverse primer 5'-TCTGGTGCTTACTCCATGCACCAC-3' for human UBC E2-25K. In addition, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA, a housekeeping gene, was measured using 5'-AGCCACATGCTGACGACAC-3' and 5'-GCCCAATAAAGGACGAT-3' as forward and reverse primers. Real-time PCR mixture contained 2.5 μl of cDNA (reverse transcription mixture), 200 nM of each primer in SYBR Green 1 master mix (LightCycler TaqMan Master; Roche Diagnostics). PCR was performed with amplification protocol consisting of 1 cycle at 50 °C for 2 min, 1 cycle at 95 °C for 10 min, 45 cycles at 95 °C for 15 s, and 60 °C for 1 min. Amplification and detection of specific products were conducted in ABI Prism 7700 sequence detection system (PE Applied Biosystems). Relative changes in mRNA level of indicated genes were normalized relative to GAPDH mRNA.

Statistical analysis. Student’s t-test or χ² test were used to analyse all data. Statistical significance between vector-control cells and PLpro-expressing cells was noted at P<0.05.

ACKNOWLEDGEMENTS

We would like to thank the National Science Council (Taiwan) and China Medical University for financial support (NSC96-2320-B-039-008-MY3 and CMU98-CT-22, CMU98-D-S-03, CMU98-P-03).

REFERENCES

