Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes

Pauline Ferraris, Emmanuelle Blanchard and Philippe Roingeard

INSERM U966, Université François Rabelais and CHRU de Tours, France

Like most other positive-strand RNA viruses, hepatitis C virus (HCV) induces changes in the host cell’s membranes, resulting in a membranous web. The non-structural proteins of the viral replication complex are thought to be associated with these newly synthesized membranes. We studied this phenomenon, using a Huh7.5 cell clone displaying high levels of replication of a subgenomic replicon of the JFH-1 strain. Electron microscopy of ultrathin sections of these cells revealed the presence of numerous double membrane vesicles (DMVs), resembling those observed for other RNA viruses such as poliovirus and coronavirus. Some sections had more discrete multivesicular units consisting of circular concentric membranes organized into clusters surrounded by a wrapping membrane. These structures were highly specific to HCV as they were not detected in naive Huh7.5 cells. Preparations enriched in these structures were separated from other endoplasmic reticulum-derived membranes by cell cytoplasm homogenization and ultracentrifugation on a sucrose gradient. They were found to contain the non-structural NS3 and NS5A HCV proteins, HCV RNA and LC3-II, a specific marker of autophagic membranes. By analogy to other viral models, HCV may induce DMVs by activating the autophagy pathway. This could represent a strategy to conceal the viral RNA and help the virus to evade double-stranded RNA-triggered host antiviral responses. More detailed characterization of these virus–cell interactions may facilitate the development of new treatments active against HCV and other RNA viruses that are dependent on newly synthesized cellular membranes for replication.

INTRODUCTION

The formation of a membrane-associated replication complex, consisting of viral proteins, replicating RNA, altered cellular membranes and other host factors, is a hallmark of all positive-strand RNA viruses including those infecting mammalian, insect or plant cells (Miller & Krijnse-Locker, 2008; Mackenzie, 2005). Depending on the virus, replication may occur on rearranged convoluted membranes, single or double membrane vesicles of various sizes derived from the endoplasmic reticulum (ER), the intermediate compartment between the ER and the Golgi apparatus, the trans-Golgi network, mitochondria or even lysosomes (Miller & Krijnse-Locker, 2008). These membrane structures induced by positive-strand RNA viruses probably serve as a scaffold for the assembly of viral replication complexes by providing an organization and environment facilitating viral replication (Lyle et al., 2002; Schwartz et al., 2002). Some positive-stranded RNA viruses including some strains of poliovirus (Jackson et al., 2005), coxsackievirus B3 (Wong et al., 2008), dengue virus (Lee et al., 2008) and mouse hepatitis coronavirus (Prentice et al., 2004) may take over the host autophagy machinery to facilitate their own replication. These positive-stranded RNA viruses trigger autophagosome-like formation without triggering the ultimate degradation of the proteins by the lysosome (Wong et al., 2008). The specific role of autophagic pathway stimulation by these viruses remains unclear (Miller & Krijnse-Locker, 2008) but it has been suggested that newly synthesized autophagosomes may provide a physical scaffold for replication complexes on which viral RNA synthesis may occur (Jackson et al., 2005; Wong et al., 2008; Kirkegaard et al., 2004).

Hepatitis C virus (HCV) is a positive-stranded RNA virus of the family Flaviviridae (Penin et al., 2004). The various HCV isolates have been grouped into six major genotypes and many more subtypes on the basis of their genetic similarities. HCV is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide (Shepard et al., 2005). Treatment is currently limited, so intensive efforts are being made to identify antiviral drugs active against different steps of the HCV infectious cycle (Pawlotsky et al., 2007). The HCV genome encodes a large polyprotein precursor of about 3000 aa, which is co- and post-translationally processed by cellular and viral proteases to yield the mature structural proteins – core and envelope proteins (E1 and E2) – and the non-structural proteins p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B (Penin et al., 2004). Proteins NS3, NS4A, NS4B, NS5A and NS5B form a replicase that has been shown to be sufficient for autonomous HCV RNA replication in a subgenomic replicon model (Lohmann et al., 1999; Blight et al., 2000). A specific change in membrane structure, the formation of a membranous web, has been identified by electron microscopy (EM) as the principal site of viral RNA
replication in Huh7 hepatoma cells harbouring a subgenomic replicon from a 1b genotype virus (Gosert et al., 2003). This membranous web consisted of vesicles, 80–100 nm in diameter, embedded in a membrane matrix resembling the discrete inclusions previously identified by EM of liver samples from HCV-infected chimpanzees (Egger et al., 2002). EM investigations (Egger et al., 2002; Gosert et al., 2003) and biochemical analyses of purified membranes associated with the HCV replication complexes (Miyani et al., 2003; El-Hage & Luo, 2003; Huang et al., 2007) have suggested that the HCV-induced membranous web is derived from ER membranes, although it may also contain early endosome proteins, including Rab5 (Stone et al., 2007). Independent reports have recently suggested that the autophagy machinery is required for the HCV life cycle (Ait-Goughoulte et al., 2008; Sir et al., 2008; Dreux et al., 2009; Tanida et al., 2009). This has been shown to be the case in cells harbouring a subgenomic replicon or supporting the complete viral life cycle, and also for different genotypes. Like poliovirus and coxsackievirus B3, HCV induces the accumulation of autophagosomes but does not increase the rate of autophagic protein degradation. However, these studies provided conflicting results concerning the stage of the HCV life cycle requiring the autophagy machinery and it remains unclear whether there is a connection between the HCV membranous web and these autophagosomes. The membranous web is not frequently encountered by EM of sections of cells harbouring a subgenomic HCV 1b replicon (Gosert et al., 2003; P. Ferraris & P. Roingeard, unpublished data) and this structure remains poorly understood. The identification of an HCV isolate of genotype 2a (strain JFH-1) capable of high levels of replication in the Huh7 cell line without the need for mutations conferring adaptation to cell culture has finally made it possible to establish an in vitro cell culture system for HCV (Wakita et al., 2005; Lindenbach et al., 2005; Zhong et al., 2005). However, this particular strain induces the formation of highly complex membrane structures in infected cells (Miller & Krijnse-Locker, 2008; Welsch et al., 2009) and the detailed analysis of these structures is extremely difficult (Welsch et al., 2009). Biochemical analyses of a purified membranous web combined with EM and negative staining analysis have been very informative for models such as poliovirus (Egger et al., 1996) but no studies of this type have been reported for HCV. Therefore we made use of a similar approach and the strong replication of the HCV JFH-1 isolate to investigate the cellular membranes associated with HCV RNA and proteins in the context of a subgenomic replicon.

RESULTS

EM analysis of the intracellular changes associated with JFH-1 strain replication

Huh7.5-C5 cells harbouring the JFH-1 subgenomic replicon displayed significant and highly specific ultrastructural modifications by EM (Fig. 1a–c), as shown by comparisons with uninfected Huh7.5 control cells (Fig. 1d). The cytoplasm of the Huh7.5-C5 cells contained numerous 200–500 nm wide double membrane vesicles (DMVs; Fig. 1a, b). These vesicles were initially thought to consist of a single, very thick and electron-dense membrane. However, careful examination at high magnification revealed the presence of a double membrane in some areas suggesting a tight association of the two membranes in these vesicles (inset in Fig. 1a, b), as reported for similar structures in cells infected with coronavirus (Snijder et al., 2006). We estimated the frequency of these DMVs by determining the number of these vesicles in 60 consecutive cell sections for Huh7.5-C5 and Huh7.5 cells. The mean number of DMVs

Fig. 1. Main ultrastructural changes in Huh7.5-C5 cells harbouring a subgenomic replicon of the JFH-1 strain. (a, b) The cells were characterized by the presence throughout the cytoplasm of 200–500 nm wide vesicles with a thick, electron-dense membrane which were clearly different from the normal lamellar ER membranes [white arrowheads in (a)] and mitochondria [m in (b)]. A careful examination of these structures at a higher magnification showed that this thick membrane actually consisted of two closely apposed membranes as a double membrane could be discerned in some areas [black arrowheads in the vesicle shown in the insets of (a) and (b)] – the enlarged vesicles shown in the insets are indicated by the white square in the corresponding panel. These structures shown in (a) and (b) were highly specific to Huh7.5-C5 cells, and were rarely found in the Huh7.5 control cells. (c) A less frequent ultrastructural feature of the Huh7.5-C5 cells was the presence of large single-membrane vesicles (up to 800 nm across), containing several circular units (black arrows), 150–200 nm wide, consisting of concentric membranes surrounding a denser core. These structures were never found in the Huh7.5 control cells. (d) Control Huh7.5 cells displayed normal rough ER (white arrowheads). Bars, 1 μm (a, b); 0.2 μm (c); 2 μm (d).
was 0.4 μm⁻² for Huh7.5-C5 cells and 0.01 μm⁻² for Huh7.5 cells (37 DMVs per cell section for Huh7.5-C5 cells versus one per cell section for Huh7.5 cells).

In some cell sections we also found highly organized vesicular structures up to 800 nm in diameter (Fig. 1c). These larger vesicles were delimited by a single membrane and contained smaller circular vesicular structures 150–200 nm in diameter. Each of these smaller units seemed to contain a dense core surrounded by several concentric membranes (Fig. 1c).

Isolation of host cell membranes associated with the HCV RNA and proteins on a sucrose gradient

All fractions with a density between 1.02 and 1.27 g cm⁻³ were positive for the ER marker calreticulin, in both the Huh7.5-C5 and Huh7.5 cell lines (Fig. 2a). Only fractions with a density of 1.18–1.27 g cm⁻³ from Huh7.5-C5 cells displayed strong staining for the LC3-II protein and weaker staining for the LC3-I protein. The three LC3-II-positive fractions of the Huh7.5-C5 cell line also tested positive for the NS3 and NS5A proteins and were the fractions containing the largest amounts of HCV RNA (Fig. 2a). Thus the membranes associated with HCV RNA and proteins contained ER markers but could be separated from other ER membranes. These ER-derived membranes, specifically associated with HCV RNA and proteins, contained markers of the autophagy machinery. In contrast, the equivalent fractions from the control cells tested negative for LC3-I and LC3-II (Fig. 2a).

EM analysis of the purified membranes associated with HCV RNA and proteins

We investigated the ultrastructure of the membranes associated with HCV RNA and proteins and specifically induced by HCV replication by EM with negative staining, based on direct comparisons of the membranous structures in the selected fractions of Huh7.5-C5 cells and the equivalent fractions of Huh7.5 control cells (Fig. 2b). The membranes associated with HCV were connected to non-specific, probably ER-derived, membranes also present in control cells [see the smooth membranes delimited by white arrowheads in Fig. 2b(i) and the same structures in Fig. 2b(ii)]. However, additional highly specific structures were observed exclusively in the purified Huh7.5-C5 membranes. These specific structures included numerous 200–500 nm wide vesicles with a very thick membrane [black arrows in Fig. 2b(i)] connected to non-specific ER membranes. These structures were probably the DMVs encountered in the cell sections shown in Fig. 1(a, b). As expected, their membranes appeared wide and clear on negative staining as the uranyl acetate could not penetrate between the tightly associated membranes. The other specific structures were small (150–200 nm wide) circular units consisting of concentric membranes [black arrows in Fig. 2b(iii)]. These small units, which seemed to be

Fig. 2. Analysis by real-time PCR, Western blotting and negative-staining EM of the Huh7.5-C5 and Huh7.5 cell homogenates separated on a sucrose gradient. (a) HCV RNA, represented here as 10⁹ IU ml⁻¹ (m2000sp-m2000r real-time PCR assay; Abbott), peaked in fractions 5–8 of the gradient. Membranes of the Huh7.5-C5 cells sedimenting on three of these fractions (5, 6 and 7), corresponding to a density of 1.18–1.27 g cm⁻³, were also positive for NS5A and NS3. These fractions also tested positive for the autophagosome marker LC3-II and, to a lesser extent, its precursor LC3-I. None of these markers was found in the equivalent fractions from the Huh7.5 control cells. Fractions 5–11 (1.02–1.18 g cm⁻³) tested positive for the ER marker calreticulin, for both Huh7.5-C5 and Huh7.5 cells. (b) Fractions 5–7 were pooled for each of the cell lines (Huh7.5-C5 and Huh7.5) and analysed by EM with negative staining. For both cell types, these fractions contained non-specific smooth membranes [structures indicated by white arrowheads in b(i); similar structures were found in the control, as shown in b(ii) and b(iv)]. Fractions from the Huh7.5-C5 cells also contained highly specific structures associated with these smooth membranes [b(ii), (iii)]. These specific structures included 200–500 nm wide vesicles with a very thick membrane [black arrows in b(ii)] and 150–200 nm wide circular units containing a core surrounded by concentric membranes [black arrows in b(iii)]. Clusters of these circular structures seemed to be enclosed by a wrapping membrane [b(iii)]. Bars, 0.5 μm [b(i), (ii)]; 0.2 μm [b(iii), (iv)].
surrounded by wrapping membranes, were less frequently encountered and probably corresponded to the structures observed in the cell sections shown in Fig. 1(c).

Immuno-EM analysis of the DMVs in Huh7.5-C5 cells prepared by cryosubstitution

We confirmed the specificity of our observations by carrying out immunogold labelling to localize the viral double-stranded RNA (dsRNA), NS5A and LC3 in Huh7.5-C5 cells. Anti-LC3 antibodies gave a strong background on immuno-EM, so we transfected Huh7.5-C5 cells with pEGFP–LC3 and then detected LC3 with anti-GFP antibodies. The viral RNA was detected with the anti-dsRNA J2 monoclonal antibody, which has been shown to detect the HCV dsRNA in cells replicating HCV (Targett-Adams et al., 2008). The fixation and embedding procedure for this specific immunostaining method resulted in the cell structures, including the DMVs in particular, being less well preserved than in cells embedded in Epon resin according to standard EM methods (Fig. 3). A faint but specific immunogold signal for dsRNA was detected within the DMVs (Fig. 3a).

By counting and analysing the subcellular localization of the gold particles in 10 consecutive cell sections, we determined that 68% of the gold particles were localized in the DMVs, and <13% of gold particles were localized in the control compartments (mitochondria and nucleus). Immunogold labelling indicating NS5A was observed at the inner membrane of the DMVs (Fig. 3b) and within some of the circular units consisting of concentric membranes (Fig. 3c). In this case, 65% of the gold particles were localized in the DMVs and <15% of gold particles in mitochondria or nucleus. Finally, immuno-EM with the anti-GFP antibody strongly decorated the membranes surrounding the DMVs (Fig. 3d). All these observations were specific to Huh7.5-C5 cells, as no immunogold labelling was detected in the Huh7.5 control cells (data not shown).

DISCUSSION

The induction of host cell membrane rearrangements, probably creating a scaffold for the assembly of viral replication complexes, has been described in almost all groups of positive-strand RNA viruses, but the architecture and origin of the resulting membrane structures differ between viral groups (Miller & Krijnse-Locker, 2008). For HCV, it has been suggested that the induced membrane alterations are particularly heterogeneous, with irregular assemblies of membranous vesicles (Miller & Krijnse-Locker, 2008; Welsch et al., 2009). This situation makes it much more difficult to analyse these complex structures for HCV than for other members of the family Flaviviridae. We demonstrate here that the replication of a subgenomic replicon of the HCV JFH-1 strain induces numerous 200–500 nm wide DMVs (Fig. 1a–c), similar to those described for poliovirus (Schlegel et al., 1996), severe acute respiratory syndrome (SARS) coronavirus (Snijder et al., 2006) and coxsackievirus B3 (Wong et al., 2008). We also identified some DMVs on EM sections of cells harbouring a subgenomic HCV 1b replicon but in much smaller numbers. In contrast, DMVs were also frequently observed in other clones of Huh7.5 cells containing a JFH-1 subgenomic replicon (data not shown). In the SARS virus model these virus-induced, ER-derived vesicles seem to have a thick, dense membrane. However, careful EM examination has revealed the presence of double membrane (Snijder et al., 2006), a feature also found in the HCV-induced vesicles. These DMVs were initially thought to carry the SARS virus replication complexes (Snijder et al., 2006) but more recent studies have clearly demonstrated that DMVs contain some non-structural proteins, mostly dsRNA, and that their contents do not appear to be connected to the cytoplasm (Knoops et al., 2008). These findings led to suggestions that DMVs may help to conceal the viral RNA by enabling the virus to evade the dsRNA-triggered antiviral responses of the host such as those mediated by the dsRNA-dependent protein kinase (Knoops et al., 2008). The same SARS model demonstrated that viral replication occurs preferentially in circular structures known as convoluted membranes (Knoops et al., 2008) which may

![Fig. 3. Immuno-EM analysis of ultrathin sections of Huh7.5-C5 cells prepared by cryosubstitution. (a) Immunogold labelling with the anti-dsRNA monoclonal antibody was faint but mostly within the DMVs. (b, c) Immunogold labelling with anti-NS5A antibodies was observed at the inner membrane of the DMVs (b) or within the circular units containing concentric membranes (c). (d) In cells transfected with pEGFP–LC3 immunogold labelling with the anti-GFP antibody strongly decorated the surrounding membranes of the DMVs. These observations were specific to Huh7.5-C5 cells as no immunogold labelling was detected in the Huh7.5 control cells (data not shown). Bars, 0.2 μm (a, b, d); 100 nm (c).]

http://vir.sgmjournals.org
be precursors of DMVs. These structures were found to be identical to the ‘reticular inclusions’ first observed in cells infected with mouse hepatitis coronavirus (MHV) more than 40 years ago (David-Ferreira & Manaker, 1965) and subsequently referred to as ‘clusters of tubular cisternal elements’ (Krijnse-Locker et al., 1994). The small circular units observed in HCV RNA-replicating cells in our study (Fig. 1c) also resembled these previously described structures. It remains unclear whether the similar ultrastructural changes observed in cells replicating the HCV and SARS viruses reflect a similar intracellular organization for these viruses from two different families.

However, we were able to demonstrate that these specific HCV-induced structures (i.e. the DMVs and the circular units consisting of a dense core with concentric membranes and surrounded by a wrapping membrane) were frequently present in semi-purified ER-derived membranes containing the HCV RNA and proteins. These structures were closely connected to ER membranes and highly specific for HCV as they were never observed with material purified from the control cells. Unfortunately, the immunogold labelling of this material for negative-staining EM was unsuccessful (data not shown) despite the use of methods successful in other studies (Chapel et al., 2007). In this case the HCV non-structural proteins and dsRNA may not have been accessible to the antibodies as they are thought to be associated with the inner membrane of the HCV-induced vesicles (Miller & Krijnse-Locker, 2008; Quinkert et al., 2005). Nevertheless, immuno-EM analysis of ultrathin sections of cells prepared by cryosubstitution suggested that NS5A was present at the inner membrane of the HCV-induced DMVs, and the lumen of these DMVs appeared to contain some viral RNA. In addition, NS5A was observed within the circular units with concentric membranes. These results suggest that there are similarities in the intracellular organization of HCV and SARS viruses, although this assertion requires confirmation in further studies. Our observation is consistent with biochemical and ultrastructural analyses of the replication complexes of various viruses of the family Flaviviridae. In studies using detergents, trypsin and nuclease, it has been suggested that the replication complexes of West Nile virus, Japanese encephalitis virus and dengue virus are probably enclosed in a double-membrane compartment (Uchil & Satchidanandam, 2003). It has also been suggested, on the basis of EM, that the replication complexes of dengue virus (Mackenzie et al., 1996) and Kunjin virus – the Australian strain of West Nile virus (Westaway et al., 1997) – are found in small vesicles surrounded by an outer limiting membrane holding them together in clusters.

The viral components of many viruses capable of subverting the autophagy machinery for their own replication, including poliovirus (Jackson et al., 2005; Taylor & Kirkegaard, 2007), mouse hepatitis coronavirus (Prentice et al., 2004), coxsackievirus B3 (Wong et al., 2008) and dengue virus (Lee et al., 2008), colocalize with the autophagy marker LC3. This suggests that the replication complexes of these viruses may assemble on autophagic vesicles. In the poliovirus model, it has been suggested that the membrane-associated viral protein 2BC initially recruits the cytoplasmic protein LC3-I. LC3-I would then be converted by the autophagic machinery into the lipiddated species LC3-II, that could remain firmly associated with the autophagosome membrane (Taylor & Kirkegaard, 2008). It is thought that these virus-induced DMVs are similar to the autophagosome used for normal cellular autophagy, but smaller (Taylor & Kirkegaard, 2008). We provide the first demonstration, by Western blotting, that fractions enriched in HCV-induced DMVs contain LC3-II. ER-derived membranes purified from control cells were, as expected, free of LC3 as this protein is cytoplasmic in cells in which the autophagic pathway is not induced. Moreover, our immuno-EM experiments on cell sections demonstrated that the membranes of the HCV-induced DMVs were strongly positive for LC3, providing additional support for the hypothesis that these DMVs have characteristics typical of autophagosomes. The weak colocalization of HCV non-structural protein with LC3 reported elsewhere (Ait-Goughoulte et al., 2008; Sir et al., 2008; Dreux et al., 2009; Tanida et al., 2009) may be accounted for by HCV-induced DMVs containing principally viral RNA, as reported for SARS virus (Knoops et al., 2008). The presence of the HCV non-structural proteins in our LC3-positive fractions may be due to ER-derived membranes cosedimenting during subcellular fractionation. The ER derived membranes, which include the circular units with concentric membranes containing the HCV non-structural proteins, may be distinct from but interconnected with the DMVs, thereby leading to cosedimentation during subcellular fractionation under gentle conditions.

HCV has been reported to subvert, pre-empt and antagonize the innate immune system at multiple levels (Rehermann, 2009). The concealment of its replicated RNA from the host cell antiviral defence system in DMVs may constitute an additional mechanism of escape from the innate immune response. Alternatively, autophagic membranes in cells replicating HCV RNA may be induced by the innate immune response itself. Autophagy is known to be principally a functional pathway in the immune response to several viruses, intracellular bacteria or parasites (Kirkegaard et al., 2004). This response may be cell-dependent and the large number of DMVs in Huh7.5 cells harbouring the HCV JFH-1 subgenomic replicon may result from the high levels of replication of this HCV strain, intrinsic properties of this particular clone of the Huh7 cell line, or both. Further analysis of the structure, interactions and function of the membranes associated with HCV RNA and proteins is required to test this hypothesis. Improvements in our understanding of HCV–host cell interactions may ultimately lead to more effective antiviral treatments and a better prognosis for chronic HCV carriers. Such improvements in our understanding might also lead to the development of new treatments for
infections by other RNA viruses dependent on newly formed cellular membranes for replication.

METHODS

Cell culture. The Huh7.5 cell line (a gift from Dr Rice, Rockefeller University, New York, USA) is a clone of the human hepatoma cell line Huh7, obtained by curing stably selected replicon-containing cells with interferon and thus supporting efficient HCV replication (Blight et al., 2002). This cell line was grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) supplemented with 10% fetal calf serum, 100 μg penicillin ml⁻¹ and 100 μg streptomycin ml⁻¹ (Invitrogen). Huh7.5 cells were transfected with *in vitro* transscripts of the linearized pSGR-JFH1 plasmid (a gift from Dr Wakita, National Institute of Infectious Diseases, Tokyo, Japan), which contains the nucleotide sequence of the JFH-1 strain subgenomic replicon and a neomycin resistance gene, as previously described (Kato et al., 2003). Cells were cultured in G418-containing medium to select several resistant clones, whereas cells transfected with *in vitro* transcripts of the replication-defective GND mutant (a gift from Dr Wakita) were used as a control (Kato et al., 2003). Several resistant clones were amplified and their intracellular viral RNA content was determined with the Abbott m2000sp-m2000rt real-time PCR assay (Chevaliez et al., 2009) according to the protocol provided by the manufacturer. For our main subsequent investigations we selected the clone with the largest amount of intracellular RNA, Huh7.5-C5, which contained more than 1500 IU HCV RNA per cell at initial subculture. For some experiments, this clone and the control cells were further transfected with pEGFP–LC3 (Kabeya et al., 2000; a gift from Dr Noboru Mizushima, Medical and Dental University, Tokyo, Japan) and with Fugene, according to the standard protocols provided by the manufacturer (Roche).

Isolation of host cell membranes associated with HCV RNA and proteins. We established a protocol adapted from various reports on the purification of host cell membranes associated with the replication complexes of Kunjin virus (Chu & Westaway, 1992; Chu et al., 1992) and poliovirus (Egger et al., 1996). Huh7.5-C5 and Huh7.5 (control) cells were amplified to obtain 100 × 10⁶ cells, which were resuspended in 10 mM sodium acetate, 10 mM Tris/HCl pH 8.0, 1.5 mM MgCl₂, 1 mM PMSF, 2 μg aprotinin ml⁻¹ and 2 μg leupeptin ml⁻¹ (TNMg buffer), and gently homogenized with a Dounce homogenizer. After centrifugation at 500 g for 10 min at 4 °C, the cytoplasmic extracts were layered onto a double sucrose cushion of 30 and 40% (w/v in TNMg buffer) and centrifuged again at 40 000 r.p.m. (SW41 rotor; Beckman) for 2 h at 4 °C. The pellets were resuspended carefully in TNMg buffer and disrupted by several slow passages through a 21-gauge hypodermic needle. These preparations were then layered onto a discontinuous sucrose gradient (2.0 ml 80%, 2.0 ml 70%, 2.5 ml 60%, 2 ml 40%, 2 ml 30%; w/v in TNMg buffer) and centrifuged at 40 000 r.p.m. (SW41 rotor; Beckman) for 2 h at 4 °C. The densities of the 11 fractions collected with a peristaltic pump were determined by refractometry (AOC, American Optical Corporation). Fractions were then analysed for the presence of HCV RNA and proteins. Viral RNA was quantified with the Abbott m2000sp-m2000rt real-time PCR assay. The non-structural viral proteins NS3 and NS5A were detected by Western blotting. Briefly, each fraction collected was separated by SDS-PAGE in 12% polyacrylamide gels and the resulting bands were transferred to a nitrocellulose membrane. The membrane was blocked by incubation in 0.1% (v/v) NP-40 in TBS (pH 8) supplemented with 5% (w/v) skimmed milk powder (TBS-N). Membranes were incubated with polyclonal sheep antibodies against NS5A and NS3 (provided by Dr Harris, University of Leeds, UK) diluted 1:2000 in TBS-N, washed and incubated with a horseradish peroxidase-conjugated anti-sheep antibody diluted 1:10 000 in TBS-N. Antibody binding was detected by enhanced chemiluminescence (ECL; ThermoFisher). These fractions were further characterized by Western blotting for the presence of ER and autophagic membrane markers: calreticulin and LC3, respectively. Blots were incubated with a monoclonal anti-calreticulin (BD Biosciences) and a rabbit polyclonal anti-LC3 (Abcam) antibody as described above and antibody binding was detected with an appropriate horseradish peroxidase-conjugated secondary antibody.

EM. For standard ultrastructural analysis by EM cells were treated as previously described (Hourioux et al., 2007). Briefly, cells were fixed for 48 h in 4% paraformaldehyde and 1% glutaraldehyde in 0.1 M phosphate buffer pH 7.2, washed in PBS, post-fixed by incubation for 1 h with 1% osmium tetroxide and dehydrated in a graded series of ethanol solutions. Cell pellets were embedded in Epon resin (Sigma), which was allowed to polymerize for 48 h at 60 °C. Ultrathin sections were cut, stained with 5% uranyl acetate and 5% lead citrate, and deposited on EM grids coated with collodion membrane for examination under a JEOL 1230 transmission electron microscope (TEM). For ultrastructural analysis of the fractions collected from the sucrose gradient 10 μl of each fraction was deposited on EM carbon-coated grids, negatively stained with 1% uranyl acetate and analyzed under the TEM.

Immuno-EM. Huh7.5-C5 cells or Huh7.5 control cells transfected with pEGFP–LC3 were fixed 48 h after transfection, by incubation in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.2) for 20 h. The cells were collected by centrifugation and the cell pellet was then dehydrated in a graded series of ethanol solutions at −20 °C, using an automatic freezing substitution system (AFS; Leica), and embedded in London Resin Gold (LR Gold; Electron Microscopy Science). The resin was allowed to polymerize at −25 °C under UV light for 72 h. Ultrathin sections were cut and blocked by incubation with 3% fraction V BSA (Sigma) in PBS. They were then incubated with the anti-dsRNA J2 monoclonal antibody (Scicons), the polyclonal anti-NS5A antibody described above or with a polyclonal anti-GFP rabbit antibody (Abcam) diluted 1:50 in PBS supplemented with 1% FBS. Sections were then washed and incubated with an appropriate 15 nm gold-particle-conjugated secondary antibody (British Bioceil International) diluted 1:50 in PBS supplemented with 1% BSA. Ultrathin sections were cut, stained with 5% uranyl acetate, 5% lead citrate, placed on EM grids coated with collodion and observed as described above.

ACKNOWLEDGEMENTS.

This work was supported by a grant from ANRS (Association Nationale pour la Recherche sur le Sida et les hépatites virales), France. P.F. was supported by a PhD fellowship from the ANRS. We thank Dr Mark Harris, Dr Noboru Mizushima, Dr Charles M. Rice and Dr Takaji Wakita for providing us with useful biological materials and reagents. We thank Sylvie Trassard, Fabienne Arcanger and Monique Lemesle for technical assistance with EM sections and Pierre-Yves Sizaret for assistance with negative-staining EM. We thank Catherine Gaudy and Alain Goudeau for HCV RNA quantifications as well as Christophe Hourioux and Faraj Terro for helpful discussions on this work. Our data were obtained with the assistance of the RIO Electron Microscopy Facility of François Rabelais University.

REFERENCES

