Murine norovirus-1 3D^{pol} exhibits RNA-dependent RNA polymerase activity and nucleotidylylates on Tyr of the VPg

Kang Rok Han,1 Yubin Choi,1 Byung Sup Min,1 Hyesook Jeong,2 Doosung Cheon,2 Jonghyun Kim,3 Youngmee Jee,2 Sungho Shin1 and Jai Myung Yang1

1Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
2Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Seoul 122-701, Republic of Korea
3Department of Pediatric, College of Medicine, Catholic University of Korea, St Vincent Hospital, Suwon 442-723, Republic of Korea

We investigated the roles and biochemical properties of recombinant murine norovirus-1 (MNV-1) 3D^{pol} in RNA synthesis and virus genome-linked protein (VPg) nucleotidylylation. We therefore expressed VPg and 3D^{pol} of MNV-1 in <i>Escherichia coli</i>. MNV-1 3D^{pol} exhibited RNA-dependent RNA polymerase (RdRp) activity in vitro with poly(A) RNA as a template and MnCl₂ as a cofactor. MNV-1 3D^{pol} demonstrated optimum RNA-synthesis activity at pH 7.4 and 37 °C in the absence of a primer. Further, VPg was guanylylated by MNV-1 3D^{pol} in the presence of MnCl₂ in a template-independent manner. The guanylylation reaction conducted with VPg substitution mutants (Y26F, Y40F, Y45F and Y117F) and a deletion mutant (D_{117–124}) indicated that Tyr 117 was the probable target site of guanylylation. Homopolymeric RNAs did not enhance VPg guanylylation, whereas in vitro-transcribed (−) subgenomic (SG) and (+)SG RNA enhanced VPg guanylylation by 9.2 and 3.2 times, respectively. Within (−)SG RNA, the (−)ORF3 region played a critical role in enhancing VPg guanylylation, suggesting that the MNV-1 ORF3 region of negative-strand RNA contains a cis-acting element that stimulates 3D^{pol}-mediated VPg guanylylation.

INTRODUCTION

Members of the genus Norovirus in the family Caliciviridae are major causes of non-bacterial acute gastroenteritis worldwide (Green, 2007). Because of the lack of an efficient cell-culture system and an animal model to study virus propagation, the molecular mechanisms of human norovirus (HuNV) replication and its pathogenetic properties remain poorly understood. Molecular characterization of HuNV replication, therefore, has mostly been focused upon the recombinant forms of non-structural proteins. Murine norovirus-1 (MNV-1) isolated from immunocompromised mice (Karst <i>et al.</i>, 2003) has been adapted to grow in the macrophage cell line RAW264.7 (Wobus <i>et al.</i>, 2004). Thereafter, MNV-1 has served as a surrogate model system for elucidating the molecular modes of HuNV replication and pathogenicity (Wobus <i>et al.</i>, 2006).

The MNV-1 genome is a single-stranded, positive-sense RNA of approximately 7.4 kb (Karst <i>et al.</i>, 2003). A virus genome-linked protein (VPg) is predicted to be attached covalently to the 5′ end of the RNA, whilst a viral gene-derived poly(A) tail resides at the 3′ end (Daughenbaugh <i>et al.</i>, 2003; Karst <i>et al.</i>, 2003). In addition to the three open reading frames (ORFs) within the protein-encoding region, untranslated regions of unknown function reside at the 5′ and 3′ ends of the MNV-1 genome (Karst <i>et al.</i>, 2003). ORF1 encodes a polyprotein that is processed cotranslationally into six mature proteins (N-term, NTPase, p18.6, VPg, Pro and Pol) by a virus-encoded protease (3C^{pro}) (Sosnovtsev <i>et al.</i>, 2006). ORF2 and ORF3 encode VP1 and VP2, respectively. A 2.5 kb long polyadenylated subgenomic (SG) RNA containing ORF2 and ORF3 is also produced in MNV-1-infected cells (Wobus <i>et al.</i>, 2004).

A virus-encoded RNA-dependent RNA polymerase (RdRp) plays a central role in the replication of the genomic RNA of RNA viruses. Recombinant forms of the uncleaved proteinase–polymerase (Pro–Pol) precursors of feline calicivirus (FCV) and HuNV (Belliot <i>et al.</i>, 2005; Wei <i>et al.</i>, 2001), along with mature RdRPs of HuNV, rabbit hemorrhagic disease virus (RHDV) and sapovirus, exhibit RNA-synthesis activity in vitro (Fukushi <i>et al.</i>, 2004;
As calicivirus genomic RNA does not have a cap or internal ribosome entry site at the 5’ end, it has been predicted that calicivirus VPg may play a role in translation initiation. Evidence for the involvement of VPg in translation initiation has been provided by interactions between VPg and eIF3, eIF4E and eIF4G (Chaudhry et al., 2006; Daughenbaugh et al., 2003, 2006; Goodfellow et al., 2005). Protein-primed RNA replication mediated by VPg has been described in poliovirus. A uridylylated VPg, VPg-pUpU, produced in the reaction with UTP, 3D pol, 3CD and described in poliovirus. A uridylylated VPg, VPg-pUpU, Daughenbaugh (2008) has been provided by interactions between Evidence for the involvement of VPg in translation calicivirus VPg may play a role in translation initiation. Although MNV-1 is a model system for elucidating the proposed role of VPg as a primer during viral RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA replication. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.

Although MNV-1 is a model system for elucidating the molecular mode of HuNV replication, the catalytic activity of MNV-1 3Dpol during RNA synthesis in vitro has not been characterized. In this study, we investigated the roles and biochemical properties of recombinant MNV-1 3Dpol in RNA synthesis and VPg nucleotidylation. Our results indicated that MNV-1 3Dpol displays RdRp activity, initiates RNA synthesis with poly(A) as a template and requires MnCl2 as a cofactor. MnCl2, template poly(A) RNA or 3Dpol (Fig. 2a, second column), supports the proposed role of VPg as a primer during viral RNA synthesis. However, detailed information and direct evidence to support this hypothesis have not been obtained.
VPg nucleotidylylation by MNV-1 3Dpol

VPgs of RHDV and HuNV are nucleotidylylated by the corresponding RdRp in vitro, and the nucleotidylylated VPg can prime RNA replication in HuNV (Belliot et al., 2008; Machin et al., 2001). In this context, we assessed whether MNV-1 VPg could also be nucleotidylylated by 3Dpol in vitro. His6-tagged recombinant wild-type and mutant VPg were purified to >60% homogeneity (Fig. 1d).

We initially examined a reaction containing [α-32P]GTP, [α-32P]ATP, [α-32P]CTP or [α-32P]UTP as the substrate.
nucleotide, MnCl₂ as the cofactor and in the absence of template RNA. MNV-1 VPg was nucleotidylylated in a template-independent manner, and GTP was the preferred nucleotide (Fig. 3a). The radioactive VPg band intensity was reduced when [α-32P]UTP was the substrate nucleotide (Fig. 3a). This preference for GTP over UTP was also reported in a nucleotidylylation reaction of VPg catalysed by the HuNV Pro–Pol precursor (Belliot et al., 2008). When [α-32P]ATP or [α-32P]CTP was used as substrate, the band intensity of VPg was reduced further (Fig. 3a). We also observed an additional band at the 3Dpol position (Fig. 3a). Poliovirus 3Dpol and HuNV Pro–Pol were nucleotidylylated in a reaction catalysed by themselves via an unidentified mechanism; the significance of this reaction, including their potential role in intermediate nucleotide delivery to the final acceptor, VPg, remains to be clarified (Richards et al., 2006). No radioactive VPg band was observed in the reaction conducted using [α-32P]GTP instead of [α-32P]GTP (Fig. 3b), indicating that guanylylation on VPg involved an α-phosphate group of GTP.

We also measured VPg guanylylation under various reaction conditions and in the absence of template RNA. VPg guanylylation reached its highest level at 30 °C (Fig. 4a) rather than 37 °C, which was the optimum temperature for RdRp activity found in this study (Fig. 2c). VPg guanylylation catalysed by MNV-1 3Dpol occurred over a wide range of MnCl₂ concentrations, but no VPg guanylylation was detected with MgCl₂ (Fig. 4b). These results were consistent with our observations that MNV-1 3Dpol showed no detectable RdRp activity in a reaction containing MgCl₂ over a concentration range of 0.1–10.0 mM (Fig. 2d).

Tyr¹¹⁷ of MNV-1 VPg is a probable target site for nucleotidylylation

Poliovirus VPg is linked to the 5' end of the viral RNA by a bond between Tyr⁴ and the terminal uridylic acid residues...
In tobacco vein mottling virus (TVMV), VPg is linked to the viral RNA via Tyr\(^60\), and substitution of Tyr\(^60\) with Ala abolishes TVMV’s infectivity of protoplasts (Murphy et al., 1991, 1996). Tyr\(^27\) in HuNV (Belliot et al., 2008) and Tyr\(^21\) in RHDV (Machín et al., 2001) of VPgs are the target amino acid residues for nucleotidylylation. We therefore assumed that one (or more) of the four Tyr residues in MNV-1 VPg (Fig. 5a) might be a target for nucleotidylylation. To identify the Tyr residue(s) of the MNV-1 VPg that could be nucleotidylylated by 3D\(^{\text{pol}}\), we constructed mutants with Tyr at residues 26, 40, 45 and 117 by substitution with Phe. Recombinant VPgs were purified with Ni–NTA column affinity chromatography (Fig. 1d).

Despite several independent attempts, we were unable to remove a fast-migrating protein that was co-purified with the Tyr mutants (Fig. 1d). All of the VPgs except the Tyr\(^{117}\) mutant were guanylylated (Fig. 5b, top), suggesting that Tyr\(^{117}\) is the target amino acid where GMP is attached covalently to VPg. To verify VPg nucleotidylylation on Tyr\(^{117}\), a VPg mutant with a deletion from Tyr\(^{117}\) to Glu\(^{124}\) (\[^{\text{D}}^{117–124}\]) was subjected to guanylylation. As shown in Fig. 5(b) (bottom), no radioactive VPg band was detected with the \[^{\text{D}}^{117–124}\] mutant, indirectly supporting Tyr\(^{117}\) as a target site for guanylylation. Tyr\(^{117}\) was not expected to be the target amino acid for guanylylation, as Tyr\(^{27}\) in HuNV (Belliot et al., 2008) and Tyr\(^{21}\) in RHDV (Machín et al., 2001) were identified as the target amino acid residues for nucleotidylylation. Moreover, Tyr residues at this position are well-conserved in calicivirus VPgs (Fig. 5a).

The ORF3 region of MNV-1 negative-strand RNA stimulates guanylylation of VPg

In contrast to the poliovirus uridylylation reaction, where – in addition to 3CD and 3D\(^{\text{pol}}\) – either CRE or poly(A) template RNA are essential, RHDV, HuNV and potyvirus (Belliot et al., 2008; Machín et al., 2001; Puustinen & Mäkinen, 2004) RdRps do not require template RNA for VPg nucleotidylylation. However, the addition of poly(A)-tailed viral RNA template enhanced VPg nucleotidylylation in a reaction with HuNV Pro–Pol (Belliot et al., 2008).

These observations prompted us to determine whether the addition of heteropolymeric RNA can enhance VPg nucleotidylylation by MNV-1 3D\(^{\text{pol}}\). Full-length and SG RNA enhanced VPg nucleotidylylation, whereas ORF1-containing RNA deleted at the 3'‐terminal region did not enhance VPg nucleotidylylation by HuNV Pro–Pol (Belliot et al., 2008). In contrast to the poliovirus uridylylation reaction, where – in addition to 3CD and 3D\(^{\text{pol}}\) – either CRE or poly(A) template RNA are essential, RHDV, HuNV and potyvirus (Belliot et al., 2008; Machín et al., 2001; Puustinen & Mäkinen, 2004) RdRps do not require template RNA for VPg nucleotidylylation. However, the addition of poly(A)-tailed viral RNA template enhanced VPg nucleotidylylation in a reaction with HuNV Pro–Pol (Belliot et al., 2008). These observations prompted us to determine whether the addition of heteropolymeric RNA can enhance VPg nucleotidylylation by MNV-1 3D\(^{\text{pol}}\). VPg nucleotidylylation was initially assessed in the presence of one of the four homopolymeric RNA templates. We did not observe radiolabelled nucleotidylylated VPg bands, indicating that the homopolymeric RNA template did not enhance VPg nucleotidylylation by MNV-1 3D\(^{\text{pol}}\) (data not shown).

Whilst the analysis of 3D\(^{\text{pol}}\) for the nucleotidylylation of VPg with homopolymeric RNA was considerably useful, it would be more relevant to test its activity with heteropolymeric viral RNA as a template. Full-length and SG RNA enhanced VPg nucleotidylylation, whereas ORF1-containing RNA deleted at the 3'-terminal region did not enhance VPg nucleotidylylation by HuNV Pro–Pol (Belliot et al., 2008).

Fig. 3. VPg nucleotidylylation by recombinant MNV-1 3D\(^{\text{pol}}\). (a) VPg nucleotidylylation with different nucleotides as a substrate. The VPg nucleotidylylation reaction was carried out with 10 \(\mu\)M GTP, ATP, CTP or UTP and 2.5 \(\mu\)Ci [\(^{\text{32}}\)P]GTP, ATP, CTP or UTP in the absence of template RNA. The reaction was stopped by adding protein sample buffer, and the proteins were denatured at 98 °C for 10 min. Proteins were separated by SDS-PAGE (15 % gel) and visualized with Coomassie brilliant blue staining. The stained gel was dried and [\(^{\text{32}}\)P]NMP-incorporated proteins were visualized by a phosphorimager (bottom). Nucleotidylylated 3D\(^{\text{pol}}\) and VPg are indicated by arrows. Quantitative analysis of incorporated [\(^{\text{32}}\)P]NMP was determined by a liquid scintillation counter (top).

(b) VPg guanylylation with [\(^{\text{32}}\)P]GTP or [\(^{\text{32}}\)P]GTP. The reaction mixture was incubated at 37 °C for 3 h in the presence of [\(^{\text{32}}\)P]GTP or [\(^{\text{32}}\)P]GTP. The reaction was stopped and analysed as described above.
et al., 2008). These results imply that any cis-acting sequence stimulating VPg nucleotidylation by HuNV Pro–Pol must reside within SG RNA. We therefore investigated the presence of any cis-acting sequence that would enhance VPg nucleotidylation existing within MNV-1 (+)SG and (-)SG RNA (Figs 1a and 6a).

Luciferase (employed as a negative control), MNV-1 (+)SG and (-)SG RNA were prepared from T7 RNA

![Fig. 4. Optimum conditions for MNV-1 VPg nucleotidylation. (a) Temperature-dependent VPg guanylylation activity. The reaction mixture was incubated at different temperatures (20, 30, 37 or 42 °C) for 3 h with 10 μM GTP, 2.5 μCi [α-32P]GTP, 0.9 μg 3Dpol and 2 μg VPg in the absence of template RNA. The reaction was stopped by adding protein sample buffer and the proteins were denatured at 98 °C for 10 min. Proteins were separated by SDS-PAGE (15% gel) and visualized by Coomassie brilliant blue staining. The stained gel was dried and [α-32P]GMP-incorporated proteins were visualized with a phosphorimager. Nucleotidylylated 3Dpol and VPg are indicated by arrows. (b) Effect of divalent cations on VPg guanylylation activity. The reaction mixture was incubated at 37 °C for 3 h with 0.9 μg 3Dpol, 2 μg VPg and 0–5 mM MnCl₂ (left) or MgCl₂ (right). The reaction was stopped and analysed as described above.](image)

![Fig. 5. Guanylylation of mutant VPgs. (a) Alignment of amino acid sequences of VPgs from viruses belonging to the family Caliciviridae (NCBI Entrez accession numbers: FCV, AAA79323; sapovirus, Q6XDK8; RHDV, P27410; MNV-1, NC008311; HuNV, AAK50354). Four tyrosine residues of MNV-1 VPg (shaded), essential for nucleotidylylation and RNA replication in FCV Tyr²⁴, RHDV Tyr²¹ and HuNV Tyr²⁷ (asterisks), and the conserved Tyr residue (box) are indicated. Eight amino acids (Tyr 117–Glu²⁴) deleted in the Δ117–124 mutant are underlined. (b) Guanylylation of mutant VPgs. The reaction mixture was incubated at 37 °C for 3 h with 2 μg wild-type or substitution mutant (Y26F, Y40F, Y45F or Y117F) VPgs (top) or with 2 μg deletion mutant (Δ117–124) VPg (bottom). The reaction was stopped by adding protein sample buffer and the proteins were denatured at 98 °C for 10 min. Proteins were separated by SDS-PAGE (15% gel) and visualized by Coomassie brilliant blue staining. The stained gel was dried and [α-32P]GMP-incorporated proteins were visualized by a phosphorimager.](image)
polymerase in vitro transcription. The addition of (−)SG RNA greatly enhanced VPg guanylylation; (+)SG RNA also stimulated VPg guanylylation, but to a much lesser extent, whilst luciferase RNA did not stimulate any VPg guanylylation (Fig. 6b, lanes 'G'; Fig. 6c). This result suggests that the observed enhancement was sequence-specific (Fig. 6b). To determine whether the type of NTP could affect the stimulation of VPg nucleotidylylation in the presence of (−)SG RNA, we performed identical experiments using only one of the four [α-32P]NTPs as a substrate. VPg uridylylation was enhanced to a lesser degree than guanylylation (Fig. 6b, lanes ‘U’); VPg adenylylation and cytidylylation were not enhanced to a detectable level (Fig. 6b, lanes ‘A’ and ‘C’). To locate the VPg guanylylation-stimulating site within (−)SG RNA, ORF2- or ORF3-deleted (−)SG RNA (Fig. 6a) was subjected to the VPg guanylylation reaction. VPg guanylylation was enhanced by the addition of (−)ORF3-3'UTR-poly(A), whereas (−)3'UTR-poly(A) did not enhance the reaction (Fig. 6d). Taken together, these results suggest that the ORF3 region of MNV-1 negative-strand RNA may contain a cis-acting element that stimulates 3Dpol-mediated VPg guanylylation.

DISCUSSION

Studies on norovirus RNA replication have focused on the functions of non-structural proteins in vitro, due to the lack of a tissue-culture system and a small-animal model. MNV-1 propagated in the macrophage-derived RAW293.7 cell line (Wobus et al., 2004) is a surrogate system for investigating norovirus replication. As both Pol (3D) and its uncleaved precursor Pro–Pol (3CD) of HuNV MD143-2 exhibit RdRp activity (Belliot et al., 2005) and 3Dpol is the predominantly observed form in MNV-1-infected cells...
(Sosnovtsev et al., 2006), we cloned and expressed 3Dpol to investigate its \textit{in vitro} RNA-synthesis activity. We cloned a His\textsubscript{6} tag at the N terminus of the recombinant 3Dpol because, in norovirus, the C terminus of the protein is located within the active-site cleft (Ng et al., 2004). To exclude the possible interaction of a C-terminal His tag with the active-site cleft, the His tag was placed at the N terminus of the recombinant sapovirus 3Dpol (Fullerton et al., 2007). It should be noted, however, that the histidine residues cloned at the N terminus of MD145-2 Pol had an inhibitory effect on its RdRp activity (Belliot et al., 2005). We only observed MNV-1 3Dpol-dependent RNA synthesis in the presence of a poly(A) template and MnCl\textsubscript{2}. The addition of rifampicin to the reaction did not interfere with RNA synthesis, indicating that any host factors carried over during the purification step were not responsible for the RNA-synthesis activity. Based on these results, we concluded that recombinant MNV-1 3Dpol retains its RdRp activity, as reported for other caliciviruses (Belliot et al., 2005; Fukushi et al., 2004; Fullerton et al., 2007; Morales et al., 2004; López Vázquez et al., 1998, 2001; Rohayem et al., 2006a, b; Wei et al., 2001).

As the RdRps of caliciviruses require divalent cations to express their catalytic activity (Belliot et al., 2005; Fullerton et al., 2007; López Vázquez et al., 2001; Rohayem et al., 2006a), we analysed the RdRp activity of MNV-1 3Dpol in the presence of Mn2+, Mg2+ or Zn2+. The RdRp activity of MNV-1 3Dpol in the absence of a primer depended specifically on Mn2+ (Fig. 2d). In contrast to our results, the activity of RdRp in other caliciviruses relies on Mg2+ or Mn2+ (Belliot et al., 2005; Fullerton et al., 2007; López Vázquez et al., 2001; Rohayem et al., 2006a; Wei et al., 2001); moreover, the RdRps of RHDV and HuNV exhibit a higher efficiency in the presence of Mg2+ (López Vázquez et al., 2001; Rohayem et al., 2006a). An RHDV RdRp mutant within the YGDD of motif C, in which the first D is replaced with E, has been noted to exhibit enzyme activity in the presence of MnCl\textsubscript{2} under conditions in which no activity was observed with magnesium acetate (López Vázquez et al., 2000). Polioviruses containing a mutation at Asn297 of RdRp are dependent on Mn2+ for RNA replication and growth (Crotty et al., 2003). Hepatitis C virus RdRp requires Mn2+ for \textit{de novo} initiation, but requires Mg2+ for primer extension (Ranjith-Kumar et al., 2002). These observations suggest that, although most RNA polymerases require Mg2+ as a cofactor, there is some flexibility in their requirement for divalent metal ions and, occasionally, they prefer Mn2+ over Mg2+. Plants generally contain significant intracellular stores of Mn2+, and it has therefore been suggested that certain RdRps of plant viruses would possess a requirement for Mn2+ rather than Mg2+ (Crotty et al., 2003).

The Pro–Pol precursor of HuNV catalyses VPg nucleotidylylation (Belliot et al., 2008), and both Pro–Pol and Pol of RHDV can nucleotidylylate VPg (Machín et al., 2001, 2009). In order to address whether MNV-1 VPg is also nucleotidylylated by 3Dpol \textit{in vitro}, His\textsubscript{6}-tagged recombinant VPg was expressed in \textit{E. coli}. MNV-1 VPg was nucleotidylylated in a template-independent manner and GTP was the preferred nucleotide (Fig. 3a, lane 1). The optimum temperature was 37 °C for RNA synthesis (Fig. 2c) and 30 °C for VPg nucleotidylylation (Fig. 4a).

Comparison of the amino acid sequences of MNV-1 and HuNV MD145-2 VPg demonstrated that the four Tyr residues in MNV-1 VPg are conserved in HuNVS. Alignment of the amino acid sequences of calicivirus VPgs revealed that MNV-1 Tyr26, RHDV Tyr21, HuNV Tyr27 and FCV Tyr24 are well-conserved and are located at the same position (Fig. 5a). Nucleotidylylation studies on amino acid substitution and deletion mutants of VPg indicated that RHDV Tyr21 (Machín et al., 2001), HuNV Tyr27 (Belliot et al., 2008) and FCV Tyr24 (Mitra et al., 2004) play essential roles in this reaction. The four Tyr residues of MNV-1 VPg were replaced with Phe and their nucleotidylylation by 3Dpol was examined. Unlike RHDV and HuNV, the Tyr26 mutant continued to be nucleotidylylated, but the Tyr117 mutant was not. This result was supported further by nucleotidylylation performed with Δ117–124 VPg, where Tyr117–Glu124 was deleted (Fig. 5b). These data indicated that Tyr117 is essential for the incorporation of radioactive GMP into MNV-1 VPg.

The VPg uridylylation reaction of poliovirus is known to require a CRE sequence in the 2C region of genomic RNA; further, VPg uridylylation is essential for viral RNA replication (Goodfellow et al., 2000). No enhancement of RHDV VPg uridylylation was observed after poly(A), genomic RNA, antisense genomic RNA or SG RNA was added to the reaction (Machín et al., 2001). However, VPg uridylylation catalysed by the HuNV Pro–Pol precursor was stimulated by the addition of the ORF3-3’NTR-poly(A) template (Belliot et al., 2008). This observation led us to investigate whether the ORF3-3’NTR-poly(A) sequence, carrying (+)SG or (−)SG RNA, stimulated the VPg nucleotidylylation reaction catalysed by MNV-1 3Dpol. Therefore, (+)SG and (−)SG RNAs were prepared by T7 RNA polymerase-mediated \textit{in vitro} transcription by using PCR products as template DNA. We demonstrated that VPg nucleotidylylation was enhanced by the addition of negative-strand viral RNA. VPg guanylylation by MNV-1 3Dpol was stimulated greatly by the addition of (−)SG RNA and (−)ORF3-3’UTR-poly(A) RNA, but not by (−)3’UTR-poly(A) RNA (Fig. 6b–d). Our results suggest strongly that \textit{cis}-acting sequences residing within the ORF3 region of negative-strand RNA are involved in the nucleotidylylation process catalysed by MNV-1 3Dpol \textit{in vitro}.

METHODS

Plasmid construction. MNV-1 RNA was extracted from RAW264.7 cells infected with MNV-1 (kindly provided by Herbert W. Virgin, IV, Washington University School of Medicine, St Louis, MO, USA) as described by Hsu et al. (2005) with minor modifications. MNV-1 cDNA was synthesized by Moloney murine leukemia virus reverse
transcriptase (Bioneer). The cDNAs encoding VPg (nt 2616–2987) and 3Dpol (nt 3537–5069) were amplified by PCR using the cDNA synthesis reaction product as a template, primer sets for VPg (M-VPg-F and M-VPg-R) or 3Dpol (M-Pol-F and M-Pol-R) (see Supplementary Table S1, available in JGV Online) and AccuPower HF PCR PreMix (Bioneer), according to the manufacturer’s instructions. The PCR products were then cloned into the pCR2.1-TOPO vector (Invitrogen). The resulting recombinant pCR2.1-TOPO vectors were digested with NdeI and BamHI and cloned into the E. coli expression vector pET-14b (Novagen) previously digested with the corresponding restriction enzymes. The recombinant plasmids were designated pET-Vpg-WT and pET-Pol-GDD. PCR products were purified with a MEGAclear kit (Ambion) and the RiboMAX RNA production system (Promega) using T7 polymerase and stained with Coomassie brilliant blue. RNAs that were purified with a BCA protein kit (Pierce) and stored at −80 °C (final concentration, 1 mM). Cells were harvested by centrifugation at 20,000 × g for 10 min. The pH of buffers, divalent-cation concentrations and the temperature used are described in the figure legends. The reaction was stopped by adding an equal volume of 200 mM EDTA (pH 8.0); then, 8 μl reaction mixture was spotted onto DE81 filter paper (Whatman). The filter paper was dried at room temperature for 10 min and washed three times with 2 ml 2× SSC solution for 10 min. Finally, the filter paper was dehydrated with 2 ml absolute ethanol and dried at 80 °C. The radioactivity of incorporated [α-32P]NMP was measured with a liquid scintillation counter (Wallac 1407).

Vpg nucleotidylation assay. The nucleotidylation assay was performed as described by Belliot et al. (2008) with some modifications. The reaction was carried out for 3 h at 37 °C in a 20 μl reaction mixture containing 50 mM HEPES (pH 7.4), 2.5 mM MgCl2, 10 mM DTT, 1 μg template RNA, 10 μM GTP, 2.5 μCi [α-32P]GTP (3000 Ci mmol−1, 10 μCi ml−1), 2 μg VPg and 1.8 μg 3Dpol. The divalent-cation concentrations, template RNAs, type of VPg, temperature and type of isotope used are indicated in the figure legends. The reaction was stopped by adding 5 μl 5 × protein sample buffer, and the reaction products were separated by SDS-PAGE (15% gel) and visualized by Coomassie brilliant blue staining. The gel was dried and nucleotidylylated VPg bands were visualized with a phosphorimager (BAS-1000). To quantify [α-32P]NMP incorporated into VPg, VPg bands were excised from the gel and radioactivity was measured in a liquid scintillation counter.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (A085119).

REFERENCES

