Mumps virus small hydrophobic protein targets ataxin-1 ubiquitin-like interacting protein (ubiquilin 4)

Maria Woznik,¹,² Claudia Rödner,³ Ken Lemon,⁴ Bert Rima,⁴ Annette Mankertz²† and Tim Finsterbusch²†

¹Department of Biology, Chemistry and Pharmacy, FU-Berlin, Takustra. 3, 14195 Berlin, Germany
²National Reference Centre Measles, Mumps, Rubella, Division of Viral Infections (FG12), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
³Lampe Konieczny & Company GmbH & Co. KG, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
⁴School of Medicine, Dentistry and Biomedical Sciences, Centre for Infection and Immunity, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK

The small hydrophobic (SH) protein of mumps virus has been reported to interfere with innate immunity by inhibiting tumour necrosis factor alpha-mediated apoptosis. In a yeast two-hybrid screen we have identified the ataxin-1 ubiquitin-like interacting protein (A1Up) as a cellular target of the SH protein. A1Up contains an amino-terminal ubiquitin-like (UbL) domain, a carboxy-terminal ubiquitin-associated (UbA) domain and two stress-inducible heat shock chaperonin-binding (Sti1) motifs. This places it within the ubiquitin-like protein family that is involved in proteasome-mediated activities. Co-immunoprecipitation confirmed the binding of SH and A1Up and demonstrates that a truncated protein fragment corresponding to aa 136–270 of A1Up, which represents the first Sti1-like repeat and an adjacent hydrophobic region, was sufficient for interaction, whereas neither the UbL nor the UbA domains were required for interaction. The ectopic expression of A1Up leads to a redistribution of SH to punctate structures that co-localize with the 20S proteasome in transfected or infected mammalian cells.

INTRODUCTION

Mumps virus (MuV) belongs to the family Paramyxoviridae, genus Rubulavirus. This enveloped virus contains a 15 384 nt non-segmented, ssRNA genome of negative polarity. MuV causes an acute communicable childhood disease characterized by fever and parotitis. The virus is transmitted via the respiratory route and is often disseminated to the CNS (Carbone & Rubin, 2007). Hence, MuV infection was the most common cause of aseptic meningitis prior to vaccination being available for it (Watson et al., 1998).

The SH gene of MuV is highly variable. Consequently, a 316 nt fragment comprising the SH mRNA is used for MuV genotyping. Phylogenetic comparison of the SH gene from virus isolates has led to the definition of 12 MuV genotypes, which have been designated A–L (Jin et al., 2005). Recently a new genotype, M, was described (Santos et al., 2008). The SH (small hydrophobic) protein of MuV is expressed in MuV-infected cells but is not a constituent part of the virion (Takeuchi et al., 1996). SH is apparently non-essential for viral replication in cell culture, since the growth rate of cell culture-adapted strain Enders, which does not express the SH protein, is not restricted compared with wild-type MuV strains (Afzal et al., 1990; Takeuchi et al., 1991). Though the SH proteins of other paramyxoviruses, e.g. human respiratory syncytial virus (HRSV) and parainfluenza virus 5 (PIV5, formerly also named SV5), do not share any sequence homology with the MuV SH protein, all have been reported to be involved in blocking the tumour necrosis factor alpha (TNF-α)-mediated apoptosis pathway by inhibition of TNF-α signalling. Furthermore, a recombiant PIV5, in which the original SH has been replaced by that of HRSV or MuV, was able to block TNF-α-induced apoptosis (Fuentes et al., 2007; Wilson et al., 2006). In addition, the SH protein of HRSV has been predicted to act as a viroporin (Perez et al., 1997; Kochva et al., 2003). Viroporins are a group of highly hydrophobic small viral proteins that are able to homo-oligomerize and induce membrane permeability (Gonzalez & Carrasco, 2003).
The ataxin-1 ubiquitin-like interacting protein (A1Up), also known as ubiquilin 4, is involved in proteasome-mediated degradation of proteins and interacts with ataxin-1, a protein associated with the neurodegenerative disease spinocerebellar ataxia type 1 (Davidson et al., 2000). A1Up contains several protein motifs characteristic for ubiquilin proteins. These include an amino-terminal ubiquitin-like (UbL) domain that is responsible for binding to the S5a subunit of the 19S proteasome (Hiyama et al., 1999) and a carboxy-terminal ubiquitin-associated UbA domain that interacts with polyubiquitinated proteins and thereby initiates their proteasome-mediated degradation (Riley et al., 2004). A1Up also contains two stress-inducible heat shock chaperonin-binding (Sti1) motifs that are known to bind to a wide range of cellular proteins. The first Sti1 motif of A1Up has been reported to bind to proteins with endoplasmic reticulum (ER) signal sequences. It is preceded by a hydrophobic region that enhances binding by attaching A1Up to the ER membrane via hydrophobic interactions (Matsuda et al., 2001).

The role of the SH protein of MuV in the process of MuV infection is still largely unknown. For this study, we investigated the field of virus–host cell interaction to gain more detailed knowledge about the function of the SH protein. We determined early in this study that A1Up is a cellular interaction partner and we concentrated on this.

RESULTS

Cellular proteins binding to SH

To identify cellular proteins interacting with the SH protein of MuV, the SH protein of the vaccine strain Jeryl Lynn 2 (SHJL) was used as bait in a yeast two-hybrid screen. Six million independent clones from a human cDNA library were screened for interaction with the SH protein. A total of 17 positive clones were rescued, sequenced and analysed by BLAST search. Similarity to three human proteins was found. Three clones matched the carboxy-terminal region of A1Up (601 aa; GenBank accession no. NP_064516), with the largest fragment (A1U0) showing 99% identity with the last 426 aa. One clone (GPR1250) showed 99% identity to the carboxy-terminal 379 aa of human G protein-coupled receptor 125 (GPR125, 1312 aa; GenBank accession no. NP_660333). Three clones corresponded to the human renin receptor (RR, 350 aa; GenBank accession no. NP_005756); clone RR0 was 100% identical to the carboxy-terminal 250 aa of the human RR. The remaining ten clones did not encode ORFs with marked similarity to known proteins. In the following we will focus on the interaction of SH and A1Up.

The interaction of SH with the receptor proteins GPR125 and RR will be described elsewhere. A1U0 was retested for interaction by co-transformation with vector pGBK7 or with the bait construct pBD–SHJL into yeast strain AH109 (Fig. 1a). Co-transformation was confirmed by growth on double drop-out (DDO) plates (Fig. 1a, lower panel), while colonies on DDO plates indicate co-transformation of bait and prey plasmids, respectively (lower panel). (b) Co-immunoprecipitation (co-IP) of A1Up with the SH protein. 293 cells were co-transfected with plasmids pMyc–A1Up and pHA–SH wt (lanes 1 and 2) or pMyc–A1Up and pCMV–HA (lane 3). Cell lysates were subjected to co-IP with rabbit anti-HA antiserum or non-specific rabbit IgG antiserum, as indicated, and protein G–Sepharose. Proteins were separated by SDS-PAGE, then blotted and detected with mouse anti-Myc and anti-HA antibodies. As expression controls for the proteins, the respective cell lysates were immunoblotted using mouse anti-Myc and anti-HA antibodies (lanes 1c, 2c and 3c). Detection of β-actin by a mouse anti-β-actin antibody served as an internal loading control.

Fig. 1. (a) Interaction of MuV SHJL and A1U0 shown in a yeast two-hybrid assay. Yeast strain AH109 was co-transformed with pBD–SHJL and pACT–A1U0. Interaction of SHJL with the A1U0 fragment is indicated by growth of colonies on the QDO/X plate (upper panel, middle section). SHJL and A1U0 showed negative results for autoactivation (upper panel, right and left section). Colonies on DDO plates indicate co-transformation of bait and prey plasmids, respectively (lower panel). (b) Co-immunoprecipitation (co-IP) of A1Up with the SH protein. 293 cells were co-transfected with plasmids pMyc–A1Up and pHA–SH wt (lanes 1 and 2) or pMyc–A1Up and pCMV–HA (lane 3). Cell lysates were subjected to co-IP with rabbit anti-HA antiserum or non-specific rabbit IgG antiserum, as indicated, and protein G–Sepharose. Proteins were separated by SDS-PAGE, then blotted and detected with mouse anti-Myc and anti-HA antibodies. As expression controls for the proteins, the respective cell lysates were immunoblotted using mouse anti-Myc and anti-HA antibodies (lanes 1c, 2c and 3c). Detection of β-actin by a mouse anti-β-actin antibody served as an internal loading control.
growth of blue colonies on quadruple drop-out plates containing X-a-Gal (QDO/X) plates implied interaction of the two proteins. When A1U_RR0 and GPR1250 were tested for interaction with a wild-type MuV SH protein (SHwt), by yeast two-hybrid screening, interaction was similarly observed (data not shown).

Co-immunoprecipitation of SH and A1Up

The physical interaction of both SHwt and SHJL with A1Up was confirmed by co-immunoprecipitation (co-IP). Haemagglutinin (HA)-tagged SH (pHA–SHwt) was co-expressed with Myc-tagged full-length A1Up (pMyc–A1Up) in 293 cells. The cells were lysed and incubated with rabbit anti-HA antisera. The protein complexes were precipitated with protein G-Sepharose, separated by SDS-PAGE and analysed by immunoblotting. A1Up co-precipitated with the SH protein (Fig. 1b, lane 1). As negative controls, A1Up was either co-expressed with SH and then incubated with non-specific rabbit IgG (lane 2) or solely expressed and then incubated with rabbit anti-HA (lane 3). Both negative controls showed no significant degree of co-precipitation; the faint band appearing in the latter case is presumably due to non-specific precipitation. Co-IP with SHJL led to identical results (data not shown).

Mapping the domains of A1Up for interaction with SH

As a ubiquilin, A1Up contains an amino-terminal UbL domain, a carboxy-terminal UbA domain and two Sti1 motifs. A hydrophobic region precedes the first Sti1 motif. To investigate whether these elements are required for the interaction with SH, several truncated A1Up versions were constructed (Fig. 2a) and subjected to co-IP assays with the SH protein. A1Up fragments lacking the UbA domain (expressed by pMyc–A1U3b), the UbL domain and the hydrophobic region (expressed by pMyc–A1U9b) or both the UbA and UbL domains (expressed by pMyc–A1U11b) co-precipitated with the SH protein (Fig. 2b, lanes 1a, 2a and 3a), implying that neither the UbL nor the UbA domain is necessary for binding SH. To investigate the role of the Sti1 motifs in the interaction with SH, truncated fragments of A1Up containing the Sti1 motifs in various combinations were tested. Fragment A1U136–270, comprising the first Sti1 motif and the hydrophobic region, interacted with SH (Fig. 2b, lane 5a), while A1U186–270, lacking the hydrophobic region and the amino-terminal fragment A1U1–143 did not (Fig. 2b, lanes 4a and 6a). A1U239–601, a larger fragment comprising the second Sti1 motif, exhibited a faint signal (Fig. 2b, lane 7a). None of the proteins tested was precipitated in the presence of non-specific rabbit IgG (Fig. 2b, lanes 1b–7b), which was used as the negative control. These results suggest that the interaction of A1Up with SH is not mediated by the UbL and UbA domains. Interaction occurred when either two Sti1 regions or the first Sti1 domain and the hydrophobic region were present. The hydrophobic region might be able to enhance the binding activity of the Sti1 region. A similar effect has been described for the interaction of UBIN, the murine A1Up homologue, and Hsp47 (Matsuda et al., 2001). The weak interaction observed for A1U259–601, which contains only the second Sti1 motif, in contrast to A1U186–270, which did not show any interacting capacity, might be due merely to the extension of the fragment to a size that allows correct folding of the protein.

Subcellular localization of A1Up and SH

To investigate whether SH and A1Up mutually affect their subcellular localization, 293 cells were transfected with pMyc–A1Up and pHA–SHwt and analysed by confocal laser scanning microscopy. We observed that A1Up formed a punctate pattern within the nucleus and the cytoplasm, as was reported by Davidson et al. (2000), and that the 20S proteasome co-localized with A1Up in these structures (Riley et al., 2004) (Fig. 3a). In cells transfected with SH alone, the proteasome showed an even distribution throughout the cell (Fig. 3b) as in non-transfected cells. Staining against protein disulfide isomerase (PDI) demonstrated that the SH protein was localized in the ER (Fig. 3b), as reported previously by Takeuchi et al. (1996). When pHA–SHwt and pMyc–A1Up were co-expressed, SH was partially redistributed to co-localize with A1Up and the 20S proteasome in the aforementioned punctate structures (Fig. 3c), which did not co-localize with the ER marker PDI (Fig. 3d). These results demonstrate that A1Up transports the SH protein of MuV to the proteasome. When these experiments were performed with SHJL, the results did not deviate from this (data not shown). To rule out that this effect is related to the ectopic expression of SH, we have investigated the subcellular localization of SH and A1Up in MuV-infected cells (Fig. 4). Vero cells were infected with rMuV EGFP–SH and subsequently transfected with pMyc–A1Up. The EGFP–SH fusion protein expressed by the recombinant virus co-localized with PDI (Fig. 4a) and showed a distribution similar to the ectopically expressed SH in 293 cells. Co-expression with A1Up resulted in redistribution of EGFP–SH to the punctiform structures harbouring A1Up and the proteasome (Fig. 4b). This demonstrates that the interaction of SH and A1Up and the transport of SH to the proteasome are also observed in the context of an MuV infection.

Stability of SH and A1Up

The proteasome is a cellular compartment involved in protein degradation. To study whether the formation of the complex of SH and A1Up and its subsequent transport to the proteasome results in the degradation of SH, pHA–SHwt, and pMyc–A1Up were co-transfected into 293 cells. The plasmids were co-transfected with pCMV–HA and pCMV–Myc, respectively, to serve as negative controls. These results did not deviate from this (data not shown). To rule out that this effect is related to the ectopic expression of SH, we have investigated the subcellular localization of SH and A1Up in MuV-infected cells (Fig. 4). Vero cells were infected with rMuV EGFP–SH and subsequently transfected with pMyc–A1Up. The EGFP–SH fusion protein expressed by the recombinant virus co-localized with PDI (Fig. 4a) and showed a distribution similar to the ectopically expressed SH in 293 cells. Co-expression with A1Up resulted in redistribution of EGFP–SH to the punctiform structures harbouring A1Up and the proteasome (Fig. 4b). This demonstrates that the interaction of SH and A1Up and the transport of SH to the proteasome are also observed in the context of an MuV infection.
cycloheximide treatment. In a reciprocal experiment, the stability of A1Up in the presence of SH was determined. Neither the degradation rate of the SH protein, nor the stability of A1Up, was affected significantly by the presence of their interaction partner (Fig. 5). This experiment was also performed with SHJL and gave similar results (data not shown).

DISCUSSION

In this study we have identified A1Up as a cellular target of the SH protein of MuV. The interaction was demonstrated using yeast two-hybrid and co-IP studies. Moreover, the partial redistribution of SH from the ER to the proteasome after co-expression with A1Up provided additional evidence that both proteins interact specifically. Observations of binding and subcellular redistribution of SH were equal for the SH protein of the live attenuated vaccine Jeryl Lynn and for that of a wild-type MuV of genotype G, indicating that the attenuation of the MuV vaccine strain did not affect the capacity of SH to interact with A1Up.

Since the original parent wild-type viruses are lost, and are thus not available for sequencing, they cannot be compared with current vaccines. Therefore, knowledge about the genetic changes responsible for the loss of virulence is rather scant. Sequence deviations have been described with respect to virulence (Yates *et al.*, 1996) and neurovirulence (Rubin *et al.*, 2003; Lemon *et al.*, 2007), but a genetic marker for attenuation has not yet been defined. Here, we have compared the SH protein of a wild-type MuV and a vaccine. The SH gene is the most variable part of the MuV genome; the sequences of SHwt and SHJL differ by 11 aa (19%). In this study, no differences with respect to interaction and cellular localization were observed, suggesting that
attenuation of MuV does not interfere with the interaction with A1Up. A1Up is one of four highly conserved human ubiquilin proteins. Ubiquilins contain a UbL domain that mediates their interaction with the 19S subunit of the proteasome, a UbA domain that feeds proteins into the ubiquitin–proteasome pathway and two Sti1 motifs. When co-expressed with A1Up, SH was redistributed to the cytoplasm to co-localize with A1Up and the proteasome. This observation suggested that A1Up might bind SH via the UbA domain and thus eventually effectuate an increased degradation rate of the SH protein. We eliminated this suggestion by demonstrating that the capacity of A1Up to bind SH is independent of the presence of the UbA domain, and that furthermore the interaction partners do not mutually influence their degradation rate. This suggests other implications for the SH–A1Up interaction.

Using truncated versions of A1Up we were able to narrow down the location of the interacting domain to the first Sti1 motif and the preceding hydrophobic region. In the case of UBIN, a murine homologue of A1Up, the corresponding region is responsible for the interaction with the ER-targeting signal sequence of Hsp47 (Matsuda et al., 2001). Hsp47, an ER-resident stress-inducible glycoprotein, functions as a collagen-specific molecular chaperone (Nagata, 1996). For human ubiquilin 1 and 2, it was shown that the carboxy-terminal Sti1 motif binds to the ATPase domain of the Hsp70-like Stch protein (Kaye et al., 2000). Bag-1, another Sti1-like-repeat-containing protein, interacts with Hsp70 and thereby inhibits the chaperone activity of Hsp70 (Takayama et al., 1997). Hsp70 modulates NF-κB signalling pathways in the apoptotic cascade and also acts as an inhibitor of apoptosis at multiple levels, e.g. inhibition of the activation of initiator caspases and inhibition of Bax translocation to the mitochondria (Arya et al., 2007). The MuV SH protein might fit into this picture as a regulator of a potential interaction between A1Up and Hsp70. Moreover, the

Fig. 3. Intracellular distribution of SH and A1Up. Subcellular localization of HA–SHwt and Myc–A1Up was analysed in 293 cells 24 h post-transfection with pHASHwt and pMyc–A1Up. Transfected cells were fixed and subjected to immunofluorescence analysis using mouse monoclonal anti-HA, anti-Myc and anti-PDI antibodies as an ER marker and rabbit anti-20S proteasome antiserum, in conjunction with the respective goat anti-mouse or anti-rabbit Fab fragments conjugated with Cy2 (green), Cy3 (red) or Cy5 (white). The smaller sized pictures show a close-up of the rectangular range within the larger image. (a) Solely expressed Myc–A1Up (green) co-stained with 20S proteasome (white) and PDI (red). (b) Solely expressed HA–SH (green) co-stained with 20S proteasome (white) and PDI (red). (c) Co-expressed Myc–A1Up (red) and HA–SH (green) co-stained with 20S proteasome (white). (d) Co-expressed Myc–A1Up (red) and HA–SH (green) co-stained with PDI (white).
binding of SH to A1Up could stabilize A1Up in its putatively active monomeric form by occupying the central region of the protein. This part of the protein mediates the formation of protein dimers, which was previously shown for ubiquilin 1 and 2 (Ford & Monteiro, 2006). K7, another small hydrophobic protein encoded by Kaposi’s sarcoma-associated herpesvirus (HHV8) that protects cells from apoptosis, interacts with ubiquilin 1. K7 inhibits ubiquilin 1 from binding to and thereby stabilizing IκB, a regulator of the NF-κB signalling pathway, which eventually results in the rapid degradation of IκB and p53 (Feng et al., 2004).

We found that the MuV SH protein interacts with ubiquilin 1 as well (data not shown). This might suggest that, for both A1Up and ubiquilin 1, binding to SH interferes with their usual cellular function. Moreover, this may contribute to the dysregulation of the TNF-α-mediated apoptosis pathway, resulting in an anti-apoptotic function.

Fig. 4. Subcellular localization of SH and A1Up in MuV-infected cells. (a) Vero cells were infected with rMuV EGFP–SH at an m.o.i. of 0.1. Forty-eight hours after infection cells were fixed and stained with anti-PDI antibody in conjunction with an Alexa Fluor 568-conjugated anti-rabbit secondary antibody (Molecular Probes). Pictures were taken by confocal laser scanning microscopy (Leica SP5). (b) Vero cells were infected with rMuV EGFP–SH at an m.o.i. of 0.1 and transfected with pMyc–A1Up. After 48 h, cells were fixed and stained with anti-Myc antibody in conjunction with Alexa Fluor 568-conjugated anti-mouse secondary antibody (Molecular Probes). The lower row shows close-ups of the rectangular range within each of the images above.
HHV8, for instance, interferes with a number of apoptotic targets to subvert the apoptotic process. The K7 protein of many viral proteins uses several of a wide range of cellular pathways to act as an ion channel-forming viroporin as well (Kochva et al., 2003; Perez et al., 2004). Some viroporins have the capacity to inhibit caspase activity (Wang et al., 2002). A main feature of paramyxovirus SH proteins is their capacity to inhibit the TNF-α-mediated apoptosis pathway. Beyond that property, the SH protein of HRSV has been reported to act as an ion channel-forming viroporin as well (Kochva et al., 2003; Perez et al., 1997). Some viroporins have the capacity to suppress the induction of apoptosis by manipulating intracellular Ca^{2+} homeostasis, as has been described for the 2B protein of coxsackievirus (Campenella et al., 2004). The molecular mechanisms underlying the MuV SH protein’s interference with cellular pathways to prevent the induction of apoptosis, and the role that A1Up plays in this context, remain to be investigated in more detail. Also to be investigated are the involvement of GPR125 and RR, which were not explored in this study.

In summary, our results revealed new functional aspects of the SH protein, linking it to the proteasome-mediated degradation machinery and to chaperone activities, which might be modulated during MuV infection.

METHODS

Cell culture, viruses and plasmids. 293 and Vero cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 5 % (v/v) FCS at 37 °C and 5 % CO₂. MuV vaccine strain Jeryl Lynn (Afzal et al., 1993) and wild-type strain 05-063 (isolated in 2005 at the National Reference Centre Measles, Mumps, Rubella) were cultivated in Vero cells. Viral RNA was extracted using a QIAamp Viral RNA Mini Kit (Qiagen) and synthesis of cDNA was performed with MMLV-reverse transcriptase (RT) (Invitrogen) and primer Mu21F (Supplementary Table S1; available in JGV Online). DNA fragments were amplified with restriction site-tagged primers (Supplementary Table S1) and PCR products were inserted via restriction sites which were introduced into the plasmids using standard techniques (Sambrook & Russell, 2001). The MuV vaccine Jeryl Lynn is composed of two substrains, JL2 and JL5, present in a 1:5 ratio (Afzal et al., 1993). The SH gene of JL2 (SHJL) was amplified with primers MuSH22F and MuSH23R and cloned into pgBK77 (Clontech) to obtain construct pBD–SHJL. For construction of pHA–SHwt, SHJL was amplified with primers MuSH22F and MuSH36R and inserted into pCMV–HA (Clontech). SHJL was amplified with primers MuSH71F and MuSH72R and cloned into pgBK77 and pCMV–HA to obtain plasmids pBD–SHJL and pHA–SHwt. The cDNA library plasmid pACT–A1U0 was subcloned into PCM–Myc (Clontech) to produce pMyc–A1U0. A full-length cDNA clone of A1Up (BC081403) was purchased (RZPD; Imagenes) and used as a template for the amplification of PCR products cloned into PCM–Myc. The resultant plasmids and the primer pairs employed were: pMyc–A1U0, Mu206F and Mu68R; pMyc–A1U0, Mu206F and 3050; pMyc–A1U0, 3049 and Mu68R; pMyc–A1U0, 3050 and 3050; pMyc–A1U0, 3049 and 3091; pMyc–A1U0, 3089 and 3091; pMyc–A1U0, 3090 and Mu68R; and pMyc–A1U0, 3089 and 3093.

Generation of recombinant MuV from cDNA. The SH gene of the vaccine strain JL5 was amplified from the plasmid pMuV(MPBS) (Lemon et al., 2007) using primers EGFP–SH+ and Mu7307R (Supplementary Table S1). The EGFP gene was amplified from plasmid pEGFP-N1 (Clontech) using primers EGFP–SH+ and Mu7307R (Supplementary Table S1). Overlap extension PCR was used to join the two PCR fragments. The resulting product contained the EGFP ORF fused to the SH ORF via a 5 aa linker (GAGQG). This was cloned into pMuV(MPBS) using the unique BstI and SgfI restriction sites to generate pMuV–EGFP–SH. A549 cells were infected with MVA–T7 at an m.o.i. of 0.5 and transfected with pMuV–EGFP–SH along with plasmids encoding MuV N, P and L as described previously (Lemon et al., 2007). Extensive CPE was observed following the addition of Vero cells to the transfected monolayers. Plaque-purified virus was passaged three times on Vero cells.

Yeast two-hybrid library screen. The Matchmaker Gal4 Two-Hybrid System 3 (Clontech) was applied according to the manufacturer’s instructions. Yeast strain AH109 (Clontech) was transformed simultaneously with bait (pBD–SHJL) and prey (cDNA library derived from human liver; Clontech) plasmids. Transformed cells were selected on QDO plates lacking adenine, histidine, tryptophan and leucine. Yeast colonies were replated on QDO/X plates containing X-a-Gal (Biosynth) to test for ß-galactosidase expression. Blue colonies were subcultured on QDO/X plates to rescue additional library plasmids and to eliminate false positives. For plasmid isolation from yeast cells, colonies were grown in DDO medium (lacking leucine and tryptophan) at 30 °C and 200 r.p.m. for 48 h. (Innova
4430; New Brunswick Scientific) After precipitation, cells were resuspended in 10 μl lyticate (5 U ml⁻¹ Sigma-Aldrich) and incubated for 1 h at 37 °C and 250 r.p.m. (Innova 4430; New Brunswick Scientific) Ten microlitres of 20 % SDS was added and plasmids were extracted after a freeze–thaw cycle using a DNA Mini Kit (Qiagen). Escherichia coli DH5α cells were transformed with the DNA samples and prey plasmids were extracted and sequenced. A BLAST analysis was performed using the NCBI BlastP program.

Immunoprecipitation and immunoblot analysis. 293 cells were grown in six-well plates and transfected simultaneously with 200 ng plasmid DNA of pCMV–Myc-based constructs expressing full-length or truncated versions of A1Up and 200 ng of pHA–SHwt or pCMV–HA, using Effectene transfection reagent (Qiagen). Forty-eight hours post-transfection, cells were washed with PBS (pH 7.2) and incubated on ice for 1 h in 1 ml lysis buffer [150 mM NaCl, 5 mM MgCl₂, 20 mM Tris/HCl pH 8, 1 mM EDTA, 1 % IGEPA (Rhodia)] containing one table complete mini protease inhibitor per 20 ml (Roche Diagnostics). After the addition of rabbit anti-HA antibody (Hiss Diagnostics) or non-specific rabbit IgG (Dianova), samples were incubated for 2 h at 4 °C. Then 20 μl of protein G-Sepharose was added, followed by incubation for 2 h at 4 °C. The adsorbates were washed four times in PBS (pH 7.2) with 0.2 % IGEPA and subjected to SDS-PAGE (11 % acrylamide). Aliquots of complete cell lysates (50 μl) were included as input controls. Proteins were electrophoretically transferred to a PVDF membrane (Millipore). The membranes were blocked with 5 % milk powder in PBS (pH 7.2) and 0.05 % Tween 20 (PBS-T), and probed with monoclonal anti-HA, anti-Myc or anti-β-actin antibodies (Sigma). The membranes were washed and incubated with HRP-conjugated goat anti-mouse antiserum (Dianova). The antigen–antibody complexes were visualized by chemiluminescence using an ECL-Western blotting detection system (Amersham).

Immunofluorescence analysis. 293 cells were grown on coverslips in 24-well plates. For each transfection, a total of 200 ng plasmid DNA was used. Cells were either simultaneously transfected with pHA–SHwt and pMyc–A1Up or were singly transfected. Twenty-four hours after transfection, cells were fixed with 4 % paraformaldehyde in PBS (pH 7.2) and permeabilized with 0.1 % Triton X-100 in PBS (pH 7.2). The primary antibodies were labelled with the respective Fab conjugates in separate reactions. The antibody and the respective Fab fragment were mixed, incubated for 20 min at room temperature and then non-bound Fab conjugates were captured by adding a large excess of non-specific mouse, rabbit or goat IgG (Dianova) and incubating for 15 min at room temperature. The labelled antibodies were then diluted in blocking solution and added to the cells for 1 h. HA- or Myc-tagged proteins were detected with monoclonal anti-HA or anti-Myc antibodies (Sigma). ER staining was performed with monoclonal anti-PDI antibody (Acris Antibodies) and the proteasome was detected with rabbit anti-20S proteasome antisera (Biomol). Cells were washed and nuclei were stained with DAPI (Roth) in PBS-T with 2 % BSA for 5 min. Coverslips were mounted in Mowiol (Merck Biosciences) and analysed by confocal laser scanning microscopy (LSM 510; Zeiss). Visualization of DAPI was performed at 355 nm, Cy3-labelled proteins at 594 nm and Cy5-labelled proteins at 688 nm. Degradation rates of SH and A1Up. 293 cells were grown in six-well plates and co-transfected with 200 ng pHA–SHwt and pCMV–Myc or pHA–SHwt and pMyc–A1Up, using the Effectene transfection reagent (Qiagen). Twenty-four hours after transfection, cells were split 1:10 into 96-well plates and incubated with 50 ng cycloheximide ml⁻¹ (Sigma) for the indicated time (see Fig. 5), followed by fixation with a 1:1 solution of methanol/acetic acid for 15 min at –20 °C. Cells were broken for 1 h in PBS-T containing 2 % milk powder and incubated for 1 h with monoclonal anti-Myc or anti-HA antibody (Sigma). After five washing steps, cells were incubated for 45 min with HRP-conjugated goat anti-mouse antiserum (Dianova) in blocking buffer. Fifty microlitres of 3,3',5,5'-tetramethylbenzidine substrate per well was added and after 20 min the reaction was stopped with an equal amount of 1 M H₂SO₄. Reaction intensity was measured at 450 nm with 620 nm as the reference using an ELISA reader (FLUOstar Omega; BMG Labtech).

ACKNOWLEDGEMENTS

The authors thank Anne Wolbert for valuable discussion and manuscript preparation and Petra Kurzendorfer for excellent technical assistance.

REFERENCES

