1887

Abstract

Influenza virus infection is one of the major causes of human morbidity and mortality. Between humans, this virus spreads mostly via aerosols excreted from the respiratory system. Current means of prevention of influenza virus infection are not entirely satisfactory because of their limited efficacy. Safe and effective preventive measures against pandemic influenza are greatly needed. We demonstrate that infection of mice induced by aerosols of influenza A virus was prevented by chlorine dioxide (ClO) gas at an extremely low concentration (below the long-term permissible exposure level to humans, namely 0.1 p.p.m.). Mice in semi-closed cages were exposed to aerosols of influenza A virus (1 LD) and ClO gas (0.03 p.p.m.) simultaneously for 15 min. Three days after exposure, pulmonary virus titre (TCID) was 10 in five mice treated with ClO, whilst it was 10 in five mice that had not been treated (=0.003). Cumulative mortality after 16 days was 0/10 mice treated with ClO and 7/10 mice that had not been treated (=0.002). In experiments, ClO denatured viral envelope proteins (haemagglutinin and neuraminidase) that are indispensable for infectivity of the virus, and abolished infectivity. Taken together, we conclude that ClO gas is effective at preventing aerosol-induced influenza virus infection in mice by denaturing viral envelope proteins at a concentration well below the permissible exposure level to humans. ClO gas could therefore be useful as a preventive means against influenza in places of human activity without necessitating evacuation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83393-0
2008-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/60.html?itemId=/content/journal/jgv/10.1099/vir.0.83393-0&mimeType=html&fmt=ahah

References

  1. Bentz J., Mittal A. 2003; Architecture of the influenza hemagglutinin membrane fusion site. Biochim Biophys Acta 1614:24–35 [CrossRef]
    [Google Scholar]
  2. Chen Y. S., Vaughn J. M. 1990; Inactivation of human and simian rotaviruses by chlorine dioxide. Appl Environ Microbiol 56:1363–1366
    [Google Scholar]
  3. Eleraky N. Z., Potgieter L. N., Kennedy M. A. 2002; Virucidal efficacy of four new disinfectants. J Am Anim Hosp Assoc 38:231–234 [CrossRef]
    [Google Scholar]
  4. Foschino R., Nervegna I., Motta A., Galli A. 1998; Bactericidal activity of chlorine dioxide against Escherichia coli in water and on hard surfaces. J Food Prot 61:668–672
    [Google Scholar]
  5. Fukayama M. Y., Tan H., Wheeler W. B., Wei C. I. 1986; Reactions of aqueous chlorine and chlorine dioxide with model food compounds. Environ Health Perspect 69:267–274 [CrossRef]
    [Google Scholar]
  6. Ge Q., Filip L., Bai A., Nguyen T., Eisen H. N., Chen J. 2004; Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A 101:8676–8681 [CrossRef]
    [Google Scholar]
  7. Ghendon Y., Klimov A., Gorodkova N., Döhner L. 1981; Genome analysis of influenza A virus strain isolated during an epidemic of 1979–1980. J Gen Virol 56:303–313 [CrossRef]
    [Google Scholar]
  8. Gong J., Xu W., Zhang J. 2007; Structure and functions of influenza virus neuraminidase. Curr Med Chem 14:113–122 [CrossRef]
    [Google Scholar]
  9. Harakeh S., Illescas A., Matin A. 1988; Inactivation of bacteria by Purogene. J Appl Bacteriol 64:459–463 [CrossRef]
    [Google Scholar]
  10. Kong W.-P., Hood C., Yang Z.-Y., Wei C.-J., Xu L., Garcia-Sastre A., Tumpey T. M., Nabel G. J. 2006; Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc Natl Acad Sci U S A 103:15987–15991 [CrossRef]
    [Google Scholar]
  11. Lentz M. R., Webster R. G., Air G. M. 1987; Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism. Biochemistry 26:5351–5358 [CrossRef]
    [Google Scholar]
  12. Li J. W., Xin Z. T., Wang X. W., Zheng J. L., Chao F. H. 2004; Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide. Water Res 38:1514–1519 [CrossRef]
    [Google Scholar]
  13. Loret J. F., Robert S., Thomas V., Cooper A. J., McCoy W. F., Lévi Y. 2005; Comparison of disinfectants for biofilm, protozoa and Legionella control. J Water Health 3:423–433
    [Google Scholar]
  14. Lynch E., Sheerin A., Claxson A. W., Atherton M. D., Rhodes C. J., Silwood C. J., Naughton D. P., Grootveld M. 1997; Multicomponent spectroscopic investigations of salivary antioxidant consumption by an oral rinse preparation containing the stable free radical species chlorine dioxide (CIO2). Free Radic Res 26:209–234 [CrossRef]
    [Google Scholar]
  15. McCauley J. W., Mahy B. W. 1983; Structure and function of the influenza virus genome. Biochem J 211:281–294
    [Google Scholar]
  16. Moran T., Pace J., McDermott E. E. 1953; Interaction of chlorine dioxide with flour: certain aspects. Nature 171:103–106 [CrossRef]
    [Google Scholar]
  17. Nicholson K. G., Wood J. M., Zambon M. 2003; Influenza. Lancet 362:1733–1745 [CrossRef]
    [Google Scholar]
  18. Ogata N. 2007; Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 46:4898–4911 [CrossRef]
    [Google Scholar]
  19. Okull D. O., Demirci A., Rosenberger D., LaBorde L. F. 2006; Susceptibility of Penicillium expansum spores to sodium hypochlorite, electrolyzed oxidizing water, and chlorine dioxide solutions modified with nonionic surfactants. J Food Prot 69:1944–1948
    [Google Scholar]
  20. Palese P. 2004; Influenza: old and new threats. Nat Med 10:S82–S87 [CrossRef]
    [Google Scholar]
  21. Reid A. H., Taubenberger J. K. 2003; The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol 84:2285–2292 [CrossRef]
    [Google Scholar]
  22. Rice E. W., Adcock N. J., Sivaganesan M., Brown J. D., Stallknecht D. E., Swayne D. E. 2007; Chlorine inactivation of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 13:1568–1571 [CrossRef]
    [Google Scholar]
  23. Schwartz T., Hoffmann S., Obst U. 2003; Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95:591–601 [CrossRef]
    [Google Scholar]
  24. Simonet J., Gantzer C. 2006; Degradation of the Poliovirus 1 genome by chlorine dioxide. J Appl Microbiol 100:862–870 [CrossRef]
    [Google Scholar]
  25. Sivaganesan M., Rice E. W., Marinas B. J. 2003; A Bayesian method of estimating kinetic parameters for the inactivation of Cryptosporidium parvum oocysts with chlorine dioxide and ozone. Water Res 37:4533–4543 [CrossRef]
    [Google Scholar]
  26. Skehel J. J., Hay A. J. 1978; Influenza virus transcription. J Gen Virol 39:1–8 [CrossRef]
    [Google Scholar]
  27. Solorzano A., Zheng H., Fodor E., Brownlee G. G., Palese P., Garcia-Sastre A. 2000; Reduced levels of neuraminidase of influenza A virus correlate with attenuated phenotypes in mice. J Gen Virol 81:737–742
    [Google Scholar]
  28. Stevens J., Blixt O., Glaser L., Taubenberger J. K., Palese P., Paulson J. C., Wilson I. A. 2006; Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355:1143–1155 [CrossRef]
    [Google Scholar]
  29. Sy K. V., Murray M. B., Harrison M. D., Beuchat L. R. 2005; Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella , Escherichia coli O157 : H7, Listeria monocytogenes , and yeasts and molds on fresh and fresh-cut produce. J Food Prot 68:1176–1187
    [Google Scholar]
  30. Tang Y., Zaitseva F., Lamb R. A., Pinto L. H. 2002; The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J Biol Chem 277:39880–39886 [CrossRef]
    [Google Scholar]
  31. Taylor G. R., Butler M. 1982; A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine. J Hyg (Lond) 89:321–328 [CrossRef]
    [Google Scholar]
  32. Thompson W. W., Shay D. K., Weintraub E., Brammer L., Cox N., Anderson L. J., Fukuda K. 2003; Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–186 [CrossRef]
    [Google Scholar]
  33. Tsuchiya E., Sugawara K., Hongo S., Matsuzaki Y., Muraki Y., Li Z. N., Nakamura K. 2001; Antigenic structure of the haemagglutinin of human influenza A/H2N2 virus. J Gen Virol 82:2475–2484
    [Google Scholar]
  34. US Department of Labor Occupational Safety and Health Administration; 2006; Occupational Safety and Health Guideline for Chlorine Dioxide . http://www.osha.gov/SLTC/healthguidelines/chlorinedioxide/recognition.html
  35. Wagner R., Matrosovich M., Klenk H. D. 2002; Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166 [CrossRef]
    [Google Scholar]
  36. Webby R. J., Webster R. G. 2003; Are we ready for pandemic influenza?. Science 302:1519–1522 [CrossRef]
    [Google Scholar]
  37. Webster R. G., Hulse-Post D. J., Sturm-Ramirez K. M., Guan Y., Peiris M., Smith G., Chen H. 2007; Changing epidemiology and ecology of highly pathogenic avian H5N1 influenza viruses. Avian Dis 51:269–272 [CrossRef]
    [Google Scholar]
  38. WHO 2003; Influenza: Report by the Secretariat to the Fifty-Sixth World Health Assembly. (WHO, Geneva), A56/23 17 March 2003 http://www.who.int/gb/ebwha/pdf_files/WHA56/ea5623.pdf
  39. Wilson S. C., Wu C., Andriychuk L. A., Martin J. M., Brasel T. L., Jumper C. A., Straus D. C. 2005; Effect of chlorine dioxide gas on fungi and mycotoxins associated with sick building syndrome. Appl Environ Microbiol 71:5399–5403 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83393-0
Loading
/content/journal/jgv/10.1099/vir.0.83393-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error