A tale of two clades: monkeypox viruses

Anna M. Likos,1† Scott A. Sammons,1† Victoria A. Olson,1 A. Michael Frace,1 Yu Li,1 Melissa Olsen-Rasmussen,1 Whitni Davidson,1 Renee Galloway,1 Marina L. Khristova,1 Mary G. Reynolds,1 Hui Zhao,1 Darin S. Carroll,1 Aaron Curns,1 Pierre Formenty,2 Joseph J. Esposito,1 Russell L. Regnery1 and Inger K. Damon1

1National Center for Infectious Disease, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G43, Atlanta, GA 30333, USA
2World Health Organization, Geneva, Switzerland

Human monkeypox was first recognized outside Africa in 2003 during an outbreak in the USA that was traced to imported monkeypox virus (MPXV)-infected West African rodents. Unlike the smallpox-like disease described in the Democratic Republic of the Congo (DRC; a Congo Basin country), disease in the USA appeared milder. Here, analyses compared clinical, laboratory and epidemiological features of confirmed human monkeypox case-patients, using data from outbreaks in the USA and the Congo Basin, and the results suggested that human disease pathogenicity was associated with the viral strain. Genomic sequencing of USA, Western and Central African MPXV isolates confirmed the existence of two MPXV clades. A comparison of open reading frames between MPXV clades permitted prediction of viral proteins that could cause the observed differences in human pathogenicity between these two clades. Understanding the molecular pathogenesis and clinical and epidemiological properties of MPXV can improve monkeypox prevention and control.

INTRODUCTION

Smallpox was a devastating disease caused by the orthopoxvirus Variola virus. The naturally occurring disease was eradicated 25 years ago, enabling cessation of smallpox vaccination (with the orthopoxvirus Vaccinia virus) worldwide. Prior to 1970, monkeypox, a disease caused by the orthopoxvirus Monkeypox virus (MPXV), was recognized only in non-human host(s). Between 1970 and 1986, 10 cases of human monkeypox were reported from Western African countries (Sierra Leone, Nigeria, Liberia and Côte d’Ivoire) and 394 cases were reported from the Congo Basin countries of Cameroon, Central African Republic and Zaire [now Democratic Republic of the Congo (DRC)] (Jezek & Fenner, 1988). Disease reported in West Africa was less severe and demonstrated less human-to-human transmission than that from DRC (Ladnyj et al., 1972; Foster et al., 1972; Breman et al., 1980), where the World Health Organization (WHO) focused their 1981–1986 surveillance efforts. These studies addressed clinical, epidemiological, ecological and biological properties of MPXV (Jezek & Fenner, 1988). Rash burden, hospitalization rates and illness severity (a global score incorporating degree of incapacitation, need for nursing care and rash burden) were used to define human disease morbidity. Monkeypox case-fatality rates in DRC were ~10% in non-vaccinated individuals (Jezek & Fenner, 1988). Individuals vaccinated against smallpox were noted to have fewer lesions and generally less severe disease (Jezek & Fenner, 1988). Mathematical models implied that MPXV could not transmit indefinitely between humans in the absence of additional introductions from zoonotic host(s) (Fine et al., 1988), making it unlikely that MPXV would fill the niche left by smallpox eradication. Subsequent to 1990, surveillance for monkeypox waned throughout Africa.

In 2003, an outbreak of febrile rash illness in the USA among humans and captive pet prairie dogs was attributed to MPXV-infected West African rodents imported from Ghana (CDC, 2003). Laboratory testing confirmed 37 human cases as of August 2003, all associated with ill prairie dogs (CDC, 2003; Damon, 2003); no human-to-human transmission was documented. Early observations suggested that the disease described during the USA outbreak was milder than had been previously described in DRC patients (Damon, 2003; Peters, 2003). Observations, which were based on single gene sequence phylogenies, indicated the monkeypox
isolate identified in the USA belonged to a clade of MPXV distinct from that of the previously characterized DRC isolates (Reed et al., 2004). Concurrent with the 2003 USA monkeypox outbreak, the Congo Basin nation Republic of Congo (RCG) reported 10 monkeypox cases and sustained human-to-human transmission (Learned et al., 2005).

To discern potential pathogenic differences, we compared clinical and epidemiological features of confirmed human monkeypox disease, using retrospective datasets from outbreaks in the USA and DRC as well as laboratory detection of MPXV in blood samples from the concurrent USA and RCG outbreaks. We observed differences that, after controlling for population age and vaccination disparities, may be attributed to genetic differences in the geographically distinct viruses. Therefore, we sequenced and annotated five MPXV isolates to identify genomic and proteomic differences to allow the development of hypotheses regarding differences in pathogenesis.

METHODS

Clinical and epidemiological comparisons. To compare monkeypox infection in the USA, Western and Central Africa, we obtained a coded dataset generated from standardized data-collection forms at WHO, describing 404 African cases reported during 1970–1986, a time of enhanced surveillance for smallpox and, later, monkeypox. Because we were concerned that only severe cases of human monkeypox might be detected and reported during the early years, we limited our analyses to the 338 cases from 1981 to 1986 in DRC. During this time, public health authorities actively sought and reported all monkeypox cases in five regions of DRC (Jezek & Fenner, 1988), a situation more analogous to the likely complete reporting of USA human monkeypox cases. Although we initially intended to include only cases determined by direct evidence of MPXV infection (pock morphology on chorioallantoic membranes, electron microscopy visualization and/or tissue culture), comparison of serologically to non-serologically confirmed cases within DRC suggested that serologically confirmed cases may have been milder (perhaps due to less severe disease or rash burden, and therefore detected later in the disease progression). Serologically confirmed DRC cases were included to avoid potential biases. Eleven of 338 DRC case-patients died without laboratory testing and were excluded from the analysis. USA cases analysed were only those confirmed by PCR amplification specific for MPXV, viral isolation or immunohistochemistry with an appropriate epidemiological link. Information on USA cases was also collected using a standardized data-collection form.

Because age and prior vaccination for smallpox may affect the severity of human monkeypox illness, we stratified our analyses by these factors. We limited our analysis of DRC patients to the same age range as seen in the USA outbreak (6–48 years). This resulted in the exclusion of 200 cases (198 < 6 years of age, two >48 years of age) from the 327 laboratory-confirmed DRC cases. Stratification by vaccination status, however, was confounded by age, and stratification by both vaccination status and age resulted in empty cells since no children in the USA were vaccinated against smallpox, and there were no adults in DRC that had not been vaccinated.

Both datasets included information on rash burden (lesion counts), hospitalizations, case outcomes and types of complications and/or sequelae. Additionally, the USA dataset included a variable explaining the reason for hospitalization (e.g. ‘for isolation’, or ‘severity of disease’), while the WHO dataset scored illness severity as one, two or three on the basis of the number of lesions, degree of incapacitation and need for nursing care. A score of three was given to individuals with ≥ 100 lesions and severe incapacitation requiring medical care (Jezek & Fenner, 1988), although individual scores for lesions and incapacitation occasionally differed (17 of 117 cases with known lesion counts were discordant). Therefore, for our comparisons, a severely ill individual from DRC was defined as anyone with ≥ 100 lesions who was hospitalized and had an illness severity score of three. A severely ill USA patient was similarly defined as having ≥ 100 lesions and was hospitalized and was noted to be hospitalized specifically for ‘severity of disease’.

Statistical methods. Two-sided Fisher’s exact tests were used to compare infection characteristics between DRC and USA case-patients, and a non-parametric test (Wilcoxon rank sum) was used to compare ages between the two populations. For ease of evaluation, comparisons of infection characteristics between DRC and USA cases are presented as relative risk ratios (RR) with 95% confidence intervals (CI).

Strains. The five sequenced MPXV strains were derived from isolates collected in Liberia, DRC, USA and RCG. MPXV-LIB-1970-184 (DQ011156; length, 200 263 bp; G + C content, 33-09 mol%) was collected from a 3-year-old girl in Liberia in 1970. A crust sample was processed and passaged once in chorioallantoic membrane (CAM) and twice in African green monkey kidney cells (BSC-40) prior to DNA isolation for sequencing. Descriptive and initial laboratory information has been published (Foster et al., 1972; Lourie et al., 1972).

MPXV-ZAI-1979-005 (DQ011155; length, 196 967 bp; G + C content, 33-09 mol%) was isolated from a severely ill, 1-year-old boy living in Zaire in 1978 (Breman et al., 1980). The virus was isolated from a lesion scab, which was positive for poxvirus by electron microscopy and for monkeypox virus on CAM. DNA was derived from virus passed five times on BSC-40 cells.

MPXV-USA-2003-044 (DQ011153; length, 198 780 bp; G + C content, 33-08 mol%) and MPXV-USA-2003-039 (DQ011157; length, 198 780 bp; G + C content, 33-08 mol%) were collected during the 2003 monkeypox outbreak in the USA from a prairie dog and human, respectively. The prairie dog isolate was from the lymph node of the animal associated with the initial (index) case recognized in Wisconsin. The human isolate was obtained from a skin vesicle of the exotic pet distributor who sold this prairie dog to the family that heralded the outbreak (Reed et al., 2004). Both were passaged twice on BSC-40 cells prior to DNA isolation for sequencing. The MPXV-USA-2003-044 and MPXV-USA-2003-039 genomes have a single nucleotide difference at base 31 in the inverted terminal repeat region prior to the leftmost open reading frame (ORF).

MPXV-RCG-2003-358 (DQ011154; length, 197 191 bp; G + C content, 33-09 mol%) was isolated from a 10-year-old girl infected in Impfondo, RCG, and admitted to the hospital on 9 June, 2003 (Learned et al., 2005). A bloody rash-derived sample was processed and passaged twice in BSC-40 cells, followed by DNA isolation.

Sequencing. We sequenced the entire genome of five strains from USA and African MPXV isolates collected over 33 years and compared them to the published genome for MPXV-ZAI-1996-016 (Shehcheknov et al., 2002) (NC_003310). We compared genome nucleotide sequences to distinguish the clades, which we designated West African/USA and Congo Basin. Monkeypox virus DNA was prepared as previously described (Reed et al., 2004). The genomic DNAs were used as templates for the production of 20 overlapping PCR amplicons designed to span the complete viral genome. Each amplicon (5–16 kb) was generated using the Expand High Fidelity PCR system (Roche Applied Science); for each DNA sequencing...
template, eight independent PCR reactions were pooled and treated with ExoSap-IT (USB). The templates were sequenced by primer-walking both strands, using ABI Big-Dye 3.1 dye chemistry and ABI 3730XL automated DNA sequencers (both from PE Biosystems). Sequencing primers were synthesized by Integrated DNA Technologies. Approximately 2500 reads were obtained for each genome, resulting in a ninefold mean redundancy at each base position. Chromatogram data were assembled using Seqmerge (Wisconsin Package version 10.3; Accelrys), Phred/Phrap base-calling and assembly software (Ewing et al., 1998; Ewing & Green, 1998) and Consed (Gordon et al., 2001) for sequence editing.

Analysis of genomic sequences. Sequence annotation was done through a locally modified version of Poxvirus Orthologous Clusters software (Ehlers et al., 2002). Genes were predicted using GeneMarkS (Besemer et al., 2001) and Glimmer 2.02 (Delcher et al., 1999) and then tested for the presence of regulatory elements and assigned an initial annotation by comparison to other poxvirus gene databases, using BLASTP (Altschul et al., 1997). The remaining ORFs were then verified by manual inspection. Genome alignments were generated with Mavid (Bray & Pachter, 2004) with default parameters and then edited by hand to remove errors. The predicted protein sequence alignments in Fig. 5 and Supplementary Fig. S1 (available in JGV Online) were constructed using CLUSTALW (Higgins & Sharp, 1988). The diversity calculation, , was calculated using a modification of the Nei & Miller method (1990) in the JModelTest software. Approximately 2500 reads were obtained for each genome, resulting in a ninefold mean redundancy at each base position. Sequencing primers were synthesized by Integrated DNA Technologies. The amplicon DNAs were used as template for RFLP analysis, using XhoI and BglII (data not shown) restriction endonuclease analysis to identify bands that co-migrate with MPXV DNA fragments (Meyer et al., 1997).

Analysis of clinical diagnostic samples. A quantitative real-time PCR assay was used to assess the amount of viral DNA within clinical whole blood samples submitted from confirmed USA monkeypox cases, and from probable and confirmed RCG monkeypox cases to the Centers for Disease Control and Prevention (Atlanta, Georgia) during the summer of 2003. Each sample was confirmed as monkeypox, using a real-time PCR monkeypox-specific assay, and the DNA content quantified by triplicate runs, using an orthopox generic assay (Y. Li, V. Olson, T. Laue, M. Laker & I. Damon, unpublished data). Samples with MPXV DNA detected in none or only one of the triplicate runs were considered negative, and those with DNA in two of three runs were considered equivocal. A sample was considered positive only if all three runs crossed the threshold. A dilution series of purified vaccinia virus was used to create a reference standard curve for the orthopoxvirus generic real-time PCR assay. Using this standard curve, the viral load in femtograms for each sample was calculated on the basis of the mean cycle at which fluorescence from the sample crossed the threshold. To determine the length of viraemia, viral load was plotted against the number of days after onset of rash or fever.

Table 1. Clinical and epidemiological characteristics of DRC (1981–1986) and USA (2003) monkeypox cases by age

Analysis restricted to only those DRC cases within the same age range as USA cases, aged 6–48 years.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DRC (n = 127)</th>
<th>USA (n = 37)</th>
<th>USA (n = 29)</th>
<th>USA (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n %</td>
<td>n %</td>
<td>RR (95 % CI)</td>
<td>RR (95 % CI)</td>
</tr>
<tr>
<td>Case fatality rate</td>
<td>3 2·4</td>
<td>0 0·0</td>
<td>2·7 0·0</td>
<td>26 24·5</td>
</tr>
<tr>
<td>Cases due to secondary transmission</td>
<td>40 31·5</td>
<td>0 0·0</td>
<td>14 66·7</td>
<td>0 0·0</td>
</tr>
<tr>
<td>No. of lesions</td>
<td>39 33·3</td>
<td>24 88·9</td>
<td>Referent*</td>
<td>11 61·1</td>
</tr>
<tr>
<td>< 100</td>
<td>78 66·7</td>
<td>3 11·1</td>
<td>0·6</td>
<td>7 56·2</td>
</tr>
<tr>
<td>≥ 100</td>
<td>10 –</td>
<td>10 –</td>
<td>0·0</td>
<td>3 38·9</td>
</tr>
<tr>
<td>Unknown</td>
<td>51 40·2</td>
<td>14 37·8</td>
<td>1·1</td>
<td>3 14·3</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>37 29·1</td>
<td>1 2·7</td>
<td>10·8</td>
<td>3 14·3</td>
</tr>
<tr>
<td>SeVERELY ill†</td>
<td>69 55·0</td>
<td>1 0·8</td>
<td>10·8</td>
<td>3 14·3</td>
</tr>
</tbody>
</table>

*Relative risk for ≥ 100 rash lesions among DRC and USA monkeypox cases using cases with < 100 rash lesions as comparison group; referent data are included for completeness.
†Severely ill patients include those DRC cases with ≥ 100 rash lesions that were hospitalized and had an illness severity score of ‘three’. USA patients considered severely ill had ≥ 100 rash lesions that were hospitalized and were specifically noted to be seriously ill (see Methods).
RESULTS

Comparison of clinical and epidemiological features of monkeypox in Africa and the USA

DRC patients were more likely than USA patients to have pronounced rash (rash count ≥ 100) (Table 1); this was true regardless of the laboratory method used to confirm DRC case-patient status (see Methods). The 53 DRC case-patients who were confirmed by serological tests alone were less likely to have pronounced rash (RR 0.7, 95 % CI 0.58–0.84 for ≥ 100 lesions) than were DRC case-patients who were confirmed by direct virus testing. Although hospitalization rates did not differ between DRC and USA patient populations, there were significantly more severely ill patients (see Methods) in the DRC than in the USA (Table 1). There were no significant differences between DRC and USA case-patients in complication rates or sequelae (data not shown). Monkeypox-related mortality and human-to-human transmission were features seen only in DRC (Tables 1 and 2).

Young age and unvaccinated status have both been associated with more severe disease and mortality (Jezek & Fenner, 1988). Case-patients in DRC were younger than those in the USA (median 11.5 years, range 6–44 vs 25–4 years, range 6–48, respectively, P < 0.001). To control for this, we grouped case-patients by age (≥ 18 or < 18 years of age; Table 1). DRC case-patients in all age groups appeared to be at greater risk than USA patients for pronounced rash, but this difference was only significant in the population ≥ 18 years of age.

Although significantly more unvaccinated case-patients in the DRC than in the USA had pronounced rash (RR 5.6, 95 % CI 1.9–16.4; Table 2), they were not significantly more likely to be hospitalized. Overall, significantly more unvaccinated DRC than USA case-patients were severely ill; however, all unvaccinated, severely ill patients, regardless of their geographical origin, were < 18 years old (Table 2). No smallpox-vaccinated patients in the USA had pronounced rash or were severely ill, despite an apparent longer time period between onset of illness and last vaccination (> 20 years for the 2 of 10 USA patients who could recall their last vaccination vs 9.4 ± 4.3 years, range 1–18, in the DRC). In sum, human disease was more transmissible and more severe among DRC than USA case-patients, and this finding was independent of patient age and vaccination status.

Prolonged detection of viral nucleic acid

One hypothesis to explain the relative differences in disease severity and transmissibility would be a difference in the duration and magnitude of viraemia. We performed quantitative PCR for MPXV in those cases where whole blood samples were available from monkeypox patients in the USA and RCG (Fig. 1). Of 14 blood samples collected within 21 days of rash onset from 12 USA patients with confirmed infection, three were positive for MPXV DNA and two others were equivocal. All were negative past day 21, a time point likely exceeding the occurrence of viraemia in an otherwise healthy human host (Downie et al., 1950). In contrast, two of three RCG samples obtained within 21 days of rash onset from three probable or confirmed patients were positive for MPXV DNA; one of five samples collected after day 21 (day 33) was positive. These results suggested a longer presence of virus in the blood of RCG patients. No USA or RCG samples contained viable virus at the time of testing.

Single-gene phylogenies

Previous comparative analysis of discrete genes suggests the existence of at least two monkeypox virus strains that are

Table 2. Clinical and epidemiological characteristics of DRC (1981–1986) and USA (2003) monkeypox cases, aged 6–48 years, by vaccination status

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unvaccinated DRC* (n = 80)</th>
<th>Unvaccinated USA (n = 26)</th>
<th>RR (95 % CI)</th>
<th>Vaccinated DRC (n = 44)</th>
<th>Vaccinated USA (n = 10)</th>
<th>RR (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case fatality rate</td>
<td>2</td>
<td>0</td>
<td>2.5</td>
<td>1</td>
<td>0</td>
<td>2.3</td>
</tr>
<tr>
<td>Cases due to secondary transmission</td>
<td>20</td>
<td>0</td>
<td>25</td>
<td>19</td>
<td>0</td>
<td>43.2</td>
</tr>
<tr>
<td>No. of lesions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 100</td>
<td>20</td>
<td>0</td>
<td>26.3</td>
<td>18</td>
<td>0</td>
<td>47.4</td>
</tr>
<tr>
<td>≥ 100</td>
<td>56</td>
<td>3</td>
<td>73.7</td>
<td>20</td>
<td>0</td>
<td>52.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>3</td>
<td>–</td>
<td>1</td>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>34</td>
<td>10</td>
<td>57.5</td>
<td>15</td>
<td>4</td>
<td>34.1</td>
</tr>
<tr>
<td>Severely ill†</td>
<td>26</td>
<td>1</td>
<td>32.5</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* No DRC cases older than 14 years were unvaccinated.
† The mean age of unvaccinated DRC cases with severe disease was 7–4 years, range 6–14 years. The single severely ill USA case was < 18 years of age.
Two clades of monkeypox viruses

geographically separated (Reed et al., 2004). PCR amplicon and RFLP analysis of isolates collected from the USA and Central and Western African outbreaks readily classified isolates into Central or Western African strains (Fig. 2). By this genotypic criterion, Gabon, Cameroon, RCG and DRC isolates fell within the Central African clade, perhaps more appropriately called the Congo Basin clade, while Nigerian, Liberian and USA (ex-Ghana) isolates grouped into the West African clade (Fig. 2).

Whole-genome phylogenetic analysis

To establish definitively the existence of two clades and understand proteomic differences, we sequenced genomes of five geographically and/or temporally distinct strains (Supplementary Tables S1–S4 and Methods). Genomic sequences of individual West African-derived (Liberia and USA) and Congo Basin monkeypox strains showed an overall nucleotide identity of ~99% within geographical regions and only ~95% nucleotide identity across geographical groupings (Table 3). Of note, there was only a single nucleotide difference between MPXV-USA-2003-044 (prairie dog) and MPXV-USA-2003-039 (human) over one or two cycles of viral transmission, likely from a common source (Reed et al., 2004). π (Nei & Miller, 1990), a measure of ORF nucleotide diversity across all strains, was greater among predicted immunomodulatory/host-range protein encoding ORFs within the left and right genome termini than among essential virus replication/transcription ORFs encoded within the central region (Fig. 3). Most ORFs with π values >6 were fragments of orthopoxvirus homologues. Phylogenetic analyses, using maximum-likelihood and parsimony methodologies (Ronquist & Huelsenbeck, 2003; Swofford, 2002), were conducted using the four geographically distinct MPXV genomes, the previously described MPXV-ZAI-1996-016 (Shchelkunov et al., 2002), and were rooted with cowpox virus strain Grishak (CPXV-GRI) and vaccinia virus strain Copenhagen (VACV-COP). All analyses resulted in identical topologies depicting two distinct MPXV clades: West African/USA and Congo Basin (Fig. 4).

Predicted protein-sequence comparisons

To analyse proteins that discriminate clades and that may cause the observed differences in human monkeypox disease pathogenesis, we focused on the previous finding that a small number of amino acid changes significantly alter protein function in other orthopoxviruses (Rosengard et al., 2002). Using a predicted change of ≥5 aa as an indication of potentially significant altered function, we identified nine
proteins with differences conserved across the two clades (Fig. 5 and Supplementary Fig. S1). Four of these nine are involved with various aspects of the viral life cycle (including replication and transcription) and include the monkeypox orthologues of VACV-COP or vaccinia virus strain Western Reserve (VACV-WR) late transcription factor H5R (VLTF-4) (Kovacs & Moss, 1996; Beaud & Beaud, 1997; Black et al., 1998; Murcia-Nicolas et al., 1999; Brown et al., 2000) (Supplementary Fig. S1a), essential morphogenesis factor A9L (Yeh et al., 2000) (Supplementary Fig. S1b), non-essential, early expressed DNA ligase A50R (Kerr & Smith, 1989; Smith et al., 1989a; Colinas et al., 1990) (Supplementary Fig. S1c) and actin tail nucleation protein A36R (Parkinson & Smith, 1994; Sanderson et al., 1998; Wolfe et al., 1998; Frischknecht et al., 1999; Ward et al., 2003) (Supplementary Fig. S1d).

The remaining five proteins that consistently demonstrated geographically associated differences have been experimentally demonstrated to be involved with either immune evasion or host range determination in other poxviruses. These include the interleukin-1β (IL1β) receptor orthologue (affects the febrile response and virulence) (Smith & Chan, 1991; Spriggs et al., 1992; Alcamí & Smith, 1992, 1996), the SPI-1 orthologue (apoptosis regulation, host range) (Smith et al., 1989b; Kotwal & Moss, 1989; Senkevich et al., 1993; Thompson et al., 1993; Ali et al., 1994; Kettle et al., 1995; Brooks et al., 1995; Macen et al., 1996; Shisler et al., 1999; Moon et al., 1999; Legrand et al., 2004), the vaccinia C7L orthologue (a host range factor) (Perkus et al., 1990; Oguiura et al., 1993), the myxoma M-T4 orthologue (apoptosis regulation) (Barry et al., 1997; Shchelkunov et al., 1998; Hnatiuk et al., 1999; Price et al., 2002) and the orthologue of the complement control protein (CCP) (inhibits the classical and alternate complement pathways) (Isaacs et al., 1992; Miller et al., 1997; Smith et al., 2000; Rosengard et al., 2002; Isaacs et al., 2003).

Fragmentation of the West African/USA MPXV IL1β receptor orthologue was observed. Either a single nucleotide deletion results in truncation after the signal peptide (Fig. 5a) or, if the second methionine is used to initiate translation, only the first two immunoglobulin domains (Smith & Chan, 1991) are translated. Within the Congo Basin MPXV clade, the MPXV-ZAI-1979-005 orthologue also lacked the third immunoglobulin domain, while MPXV-ZAI-1996-016 and MPXV-RGC-2003-358 orthologues had full-length sequences (Fig. 5a).

Insertion/deletion events in the upstream regions of the West African/USA MPXV orthologues of vaccinia SPI-1 (C12L) and VAC-COP-C7L were predicted to affect these expressed proteins, in addition to amino acid changes. A 4 nt deletion in the variable repeat region upstream of the West African/USA MPXV vaccinia SPI-1 (C12L) orthologue may produce, dependent on promoter usage, an in-frame fusion resulting in a variable length string of amino-terminal IIF repeats (Supplementary Figs S1e, S1f, S2 and Online Supplementary Results and Discussion). Upstream of the West African/USA MPXV VAC-COP-C7L orthologue, a single nucleotide deletion was predicted to result in an amino-terminal fusion of 17 aa to the protein, depending upon which predicted promoter is used (Fig. 5b, Supplementary Fig. S3 and Online Supplementary Results and Discussion). A BIMAS-predicted 9 mer epitope of this gene product, conserved between vaccinia and variola, is protective as a single

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MPXV-RCG-2003-358</td>
<td>–</td>
<td>99.7</td>
<td>99.5</td>
<td>94.9</td>
<td>94.9</td>
<td>94.7</td>
</tr>
<tr>
<td>MPXV-ZAI-1979-005</td>
<td>55</td>
<td>–</td>
<td>99.5</td>
<td>94.9</td>
<td>94.8</td>
<td>94.5</td>
</tr>
<tr>
<td>MPIXV-ZAI-1996-016</td>
<td>172, 168</td>
<td>–</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
<td>94.4</td>
</tr>
<tr>
<td>MPIXV-USA-2003-039 (human)</td>
<td>788, 786</td>
<td>876</td>
<td>–</td>
<td>100.0*</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>MPIXV-USA-2003-044 (prairie dog)</td>
<td>158, 160</td>
<td>175</td>
<td>1</td>
<td>1</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>MPIXV-LIB-1970-184</td>
<td>775, 759</td>
<td>860</td>
<td>176</td>
<td>177</td>
<td>164, 172</td>
<td>181, 50.9</td>
</tr>
</tbody>
</table>

*Contains one SNP on the left end of the genome (before the first ORF).
peptide vaccine against a lethal intranasal vaccinia mouse challenge model in HLA-A2.1 transgenic mice (Snyder et al., 2004). In all monkeypox isolates sequenced, this epitope was perturbed (Fig. 5b), such that the BIMAS-predicted dissociation half-life decreased three to fourfold (to 107 or 89 min). The West African/USA strain predicted protein sequences contained a unique 9 mer epitope with a predicted dissociation half-life even greater than that of the vaccinia/variola epitope (437 min vs 365, respectively).

Two immunomodulatory proteins of the Congo Basin clade viruses were fragmented or absent in the West African/USA MPXV clade. The West African/USA MPXV orthologue of the myxoma virus apoptotic regulator (M-T4) was predicted to be severely truncated (Fig. 3, box E), similar to the non-functional vaccinia B9R gene product (Price et al., 2002). Although there was minimal overall amino acid conservation (~24 %), Congo Basin orthologues retained the conserved cysteine residues and, thus, may exhibit anti-apoptotic function and permit infection of lymphocytes (Fig. 5c) (Barry et al., 1997). Lastly, the MPXV orthologue of the vaccinia CCP and smallpox virus inhibitor of complement enzymes was completely absent in West African/USA isolates (Fig. 3, box B). The orthopoxvirus orthologues interfere with the classical and alternative pathways of complement activation and prevent complement-mediated virus neutralization. The Congo Basin strains are predicted to express a CCP, albeit with a truncated fourth short consensus repeat (Fig. 5d). This MPXV protein is reported to inhibit the classical complement pathway (Smith et al., 2000).

DISCUSSION

We demonstrated significant differences in epidemiological and clinical features of human monkeypox disease caused by Congo Basin and West African-derived (USA) monkeypox viruses. More pronounced morbidity, mortality,
human-to-human transmission and viraemia were (and are currently) seen in Congo Basin human monkeypox disease. Hospitalization rates, which are potentially biased due to differences in access to care and cultural/medical practices, did not differ significantly. More impartial measures of morbidity, such as global scores of illness severity or pronounced rash, did show significant differences between populations. Our analysis suggested these clinical findings were independent of age and/or smallpox vaccination status. Although these diverse disease presentations could reflect differences in access to care and cultural/medical practices, they might affect the observed differential clearance of virus from the blood of individuals infected with these strains.

A number of proteins were identified as candidates that might affect the observed different human disease manifestations. Their orthologues in other orthopoxviruses have been shown to promote viral persistence, and/or to evade immune recognition and clearance. The clade-specific orthologues may modulate viral pathogenesis or host response, perhaps playing a role in the observed differential clearance of virus from the blood of individuals infected with these strains.

ORF comparisons clearly predicted loss of function for the West African/USA MPXV CCP. Both vaccinia and variola orthologues interfere with the classical and alternate complement pathways (Rosengard et al., 2002). If Congo Basin MPXV CCP is effective in blocking complement-enhanced viral neutralization, as observed in vaccinia (Isaacs et al., 1992), one would expect prolongation of viraemia; this may partly explain the ability to detect MPXV nucleic acid by PCR in blood specimens collected at longer intervals following onset of rash in individuals infected with the Congo Basin MPXV clade. The haemorrhagic manifestation of skin lesions observed in the USA outbreak (Reed et al., 2004) may correlate with a lack of complement inhibition (Miller et al., 1997).

A novel prediction, based on previous studies with vaccinia and on sequence comparative analysis with the BIMAS program, was the potential for a peptide of the West African/USA clade to contain a unique 9 aa sequence. This new epitope, not present in the Congo Basin clade and derived from the C7L-orthologue predicted amino-terminal fusion, is expected to facilitate efficient immune recognition and clearance of West African/USA MPXV-infected host cells.

VAC-WR IL1β receptor inhibits IL1-induced murine T- and B-lymphocyte proliferation in vitro (Spriggs et al., 1992), which is anticipated to diminish host immune recognition and viral clearance. The West African/USA isolates lack a predicted IL1β receptor orthologue. In vivo models of systemic disease suggest functional IL1β receptor decreases the pathogenic febrile (cytokine-induced) response (Alcami & Smith, 1996); febrile response has not been systematically evaluated in either human disease population and may be of interest for further study.

The myxoma virus protein M-T4 is important for host range
Fig. 5. Predicted protein sequences that discriminate MPXV clades. Predicted amino acid sequences demonstrating differences between MPXV clades are aligned with orthopoxvirus orthologues (reference proteins are in parentheses). Areas of complete homology are deleted from the alignment (//). Identical amino acid (.), gaps within the coding region (-) and early ORF terminations (*) are indicated. Boxes mark regions of known/predicted function or interest: (a) signal peptide and immunoglobulin domain #3 (Smith & Chan, 1991); (b) putative antigenic peptides (Snyder et al., 2004); (c) conserved cysteines (C) (Barry et al., 1997); (d) short consensus repeat #4 (Smith et al., 2000). Abbreviations: vaccinia virus strain Copenhagen (VACV-COP), vaccinia virus strain Western Reserve (VACV-WR), variola virus strain Bangladesh (VARV-BSH), cowpox virus strain Grishak-90 (CPXV-GRI), myxoma virus strain Lausanne (MYXV-LAU), vaccinia virus complement control protein (VCP), smallpox inhibitor of complement enzyme (SPICE).
and lymphocyte infection (Barry et al., 1997). Absence of M-T4 attenuates disease in both intranasal and intradermal rabbit models and enhances the inflammatory response (Barry et al., 1997). Therefore, absence of this protein in West African/USA strains may also contribute to our observed decrease in viraemia and ultimately effect a milder disease presentation.

Combined, these observations suggest that the effect of changes among a relatively small number of ORFs could account for the differences in viral clearance and pathogenesis of human infections with West African/USA and Congo Basin MPXVs. If transmission correlates with duration and magnitude of viral presence and shedding, the observations reported here may explain why no human-to-human transmissions have been observed in the West African/USA case series.

It is possible that the clade-specific orthologues may also influence disease in reservoir or susceptible species. Host species-specific effects of the monkeypox virally encoded IL1β receptor are suggested by studies demonstrating the cowpox virus orthologue has different affinities for mouse and human IL1 (Alcami & Smith, 1996). Similar adaptations of the Congo Basin MPXV orthologue could affect disease presentation in different host species, and the absence of a West African/USA orthologue could differentially affect presentation of the virus in different hosts, influencing viral host range.

On the basis of comparisons of the entire genome of five different MPXV isolates, we have verified and elaborated on the preliminary observation of the existence of two well-developed, geographically distinct clades of MPXV, suggesting significant divergence in their evolutionary histories. Evolutionary divergence may also correlate with subtle differences in the natural histories of reservoir host species or subspecies as has been observed with other viruses (Plyusnin & Morzunov, 2001; Gonzalez, 1996), and this possibility will be the subject of future studies.

In an era of heightened awareness to the potential of nefarious bioterrorist events, the emergence of MPXV in the USA serves as a timely reminder that orthopoxviruses continue to naturally exploit novel ecological and geographical niches. A better appreciation for the steps involved in the evolution of zoonotic orthopoxviruses, including MPXV, may well be relevant to understanding the events that led to the evolution of Varicella virus, a pathogen with severe human pathogenicity, efficient transmission and highly specialized (human) host range.

Further efforts to understand the contribution of these distinct MPXV clades to human disease will continue to influence and contribute to informed decision-making relevant to interruption of monkeypox transmission to humans, possible future outbreak responses, diagnostic test deployment and even possible outbreak-related decisions regarding vaccination and therapeutics.

ACKNOWLEDGEMENTS

This work would not have been possible without the efforts of hundreds of personnel from state and local health departments, and CDC in the investigation and follow-up to the 2003 USA outbreak of monkeypox. We thank Chris Upton, Mark Buller, Michele Barry, Steve Broyles, Mary Chamberland, Patricia Fleming, Robert Wohlheuter and Joanne Cono for thoughtful discussions or critical review of the manuscript. We thank Claudia Chesley for editorial review. Furthermore, the efforts of local practitioners, international scientists, and WHO personnel, who worked throughout Africa in collecting data and specimens referenced and used in this article, are recognized. Among those involved, special recognition goes to the following USA investigation participants:

USA monkeypox investigation

Illinois
Cindy Gross
Joyce Hansen
Susan Allison
Jill Bean
Barbara Adam
John Ottolini
Connie Austin
Craig Conover
Kate Kelly
Joan Bestudik
Roland Lucht
Indiana
Hans Messersmith
Pam Pontones
James Howell
Robert Teclaw
Missouri
Mary Jo Everhart
Karen Payne
Julia Adams
Mary Mengers
Harvey Marx
C. Jon Hinkle
Howard Pue
Ralph Horne
Jessica Bauer
Sheryl Coons
Shaun Eckerle
David Hopson
Wisconsin
John Melski
Kurt Reed
Erik Stratman
Mary Beth Graham
Janet Fairley
Charles Edmiston
Sue Kehl
Seth L. Foldy
Geoffrey R. Swain
Paul Biedrzycki
Doug Gieryn
Kacey Ernst

D. Schier
Cindy Tomasello
Jacqueline Ove
Darren Rausch
Nancy Healy-Haney
Nancy Kreuser
Mark V. Wegner
James J. Kzmierczak
Carl Williams
Donita R. Croft
Herb H. Bostrom
Jeffrey P. Davis
Robert Ehlenfeldt
Carol Kirk
Center for Disease Control
and Prevention
John Barson
Michael Basso
Carolyn Bridges
Sherrie Bruce
Catherine Dentinger
Brendan Flannery
Aaron Fleischauer
Dhwani Govil
Bill Greim
Teresa Hammett
Lori Hutwagner
Stephan Jacob
Denise Jamieson
Alena Khromova
Moe Kyaw
Mary Lou Lindegren
Ryan Maddox
Jason Mott
Josh Mott
John Osborne
Alicia Postema
Paula Rosenberg
Mathew Seeman
Brian Sherman
Jane Suen
Tracee Treadwell
Ellen Whitney
Debra Yeskey

We thank the following African investigation participants for useful discussions or communications regarding the hypotheses of the manuscript:

USA investigation participants:

Mary Beth Graham John Osborne
Erik Stratman Josh Mott
Kurt Reed Jason Mott
John Melski Ryan Maddox
Kacey Ernst Debra Yeskey
Robert Teclaw Michael Basso
William Zinsstag
Immanuel Tumwesigye
Seth L. Foldy
Geoffrey R. Swain
Paul Biedrzycki
Doug Gieryn
Kacey Ernst

We thank the following African investigation participants for useful discussions or communications regarding the hypotheses of the manuscript:

Mary Beth Graham John Osborne
Erik Stratman Josh Mott
Kurt Reed Jason Mott
John Melski Ryan Maddox
Kacey Ernst Debra Yeskey
Robert Teclaw Michael Basso
William Zinsstag
Immanuel Tumwesigye
Seth L. Foldy
Geoffrey R. Swain
Paul Biedrzycki
Doug Gieryn
Kacey Ernst

We thank the following African investigation participants for useful discussions or communications regarding the hypotheses of the manuscript:

Mary Beth Graham John Osborne
Erik Stratman Josh Mott
Kurt Reed Jason Mott
John Melski Ryan Maddox
Kacey Ernst Debra Yeskey
Robert Teclaw Michael Basso
William Zinsstag
Immanuel Tumwesigye
Seth L. Foldy
Geoffrey R. Swain
Paul Biedrzycki
Doug Gieryn
Kacey Ernst

We thank the following African investigation participants for useful discussions or communications regarding the hypotheses of the manuscript:

Mary Beth Graham John Osborne
Erik Stratman Josh Mott
Kurt Reed Jason Mott
John Melski Ryan Maddox
Kacey Ernst Debra Yeskey
Robert Teclaw Michael Basso
William Zinsstag
Immanuel Tumwesigye
Seth L. Foldy
Geoffrey R. Swain
Paul Biedrzycki
Doug Gieryn
Kacey Ernst

We thank the following African investigation participants for useful discussions or communications regarding the hypotheses of the manuscript:
REFERENCE

