Priming of cytotoxic T cell responses to exogenous hepatitis B virus core antigen is B cell dependent

Una Lazdina,1 Mats Alheim,1 Jessica Nyström,1 Catharina Hultgren,1 Gallina Borisova,2 Irina Sominskaya,2 Paul Pumpens,2 Darrell L. Peterson,3 David R. Milich4 and Matti Sällberg1

Correspondence
Matti Sällberg
Matti.Sallberg@impi.ki.se

1Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S 141 86 Stockholm, Sweden
2Biomedical Research and Study Center, University of Latvia, Riga, Latvia
3Department of Biochemistry, Commonwealth University, Richmond, VA, USA
4Vaccine Research Institute of San Diego, San Diego, CA, USA

Received 28 June 2002
Accepted 11 September 2002

The hepatitis B virus (HBV) core antigen (HBcAg) has a unique ability to bind a high frequency of naive human and murine B cells. The role of HBcAg-binding naive B cells in the immunogenicity of HBcAg is not clear. The HBcAg-binding properties of naive B cells were characterized using HBcAg particles with mutated spike region (residues 76–85) sequences. Deletion of residues 76–85 (HBcD76–85) destroyed naive B cell binding, whereas deletion of residues 79–85 did not. HBcAg particles with an Ile instead of the natural Ala at position 80 did not bind naive B cells, whereas reversion of Ile80→Ala restored B cell binding. Destroying the B cell-binding ability of HBcAg had a marginal effect on the overall B cell immunogenicity of the different particles, suggesting that they were equally efficient in priming T helper cells. Therefore, the importance of HBcAg-binding B cells is studied with relation to the priming of HBcAg-specific cytotoxic T cells (CTLs). The role of HBcAg-binding B cells in the priming of HBcAg-specific CTLs was evaluated by immunization with endogenous HBcAg (DNA immunization) and exogenous recombinant HBcAg particles. Endogenous HBcAg primed HBcAg-specific CTLs in wild-type and B cell-deficient mice, whereas exogenous HBcAg primed HBcAg-specific CTLs only in wild-type mice. Importantly, HBcD76–85 did not prime CTLs despite the presence of B cells. Thus, the ability of exogenous HBcAg particles to prime specific CTLs is B cell dependent, suggesting a possible role for HBcAg-binding B cells in HBV infections.

INTRODUCTION

The nucleocapsid of hepatitis B virus (HBV) is extremely immunogenic in all vertebrate hosts tested. The capsid is composed of 180 or 240 copies of the 21 kDa core protein and exhibits hepatitis B virus core antigenicity (HBcAg). HBcAg is a unique immunogen and functions as both a T cell-independent and a T cell-dependent antigen in mice and humans (Cao et al., 2001; Milich & McLachlan, 1986). The immunogenicity of HBcAg has been proposed to rely on its structural properties (Fehr et al., 1998; Milich & McLachlan, 1986; Schodel et al., 1996). Repetitive, highly ordered protein spikes on the core shell surface might be optimal for cross-linking of the B cell antigen receptors (BCRs) (Bottcher et al., 1997; Milich et al., 1997). The binding of HBcAg to naive B cells occurs through linear motifs present on the surface immunoglobulin (sIg) molecule, encoded by some murine and human germ line gene families (Lazdina et al., 2001a). The region on HBcAg involved in binding to sIg on naive B cells has not been mapped. HBcAg binds directly to a large proportion of naive human and mice B cells through this non-traditional antigen–antibody interaction (Cao et al., 2001; Lazdina et al., 2001a; Milich et al., 1997). The B cells become activated upon BCR cross-linking by HBcAg, as evidenced by an increase in the surface expression of B7-2 (Lazdina et al., 2001a; Milich et al., 1997). After binding and processing of HBcAg, naive B cells act as efficient antigen-presenting cells (APCs) that present HBcAg to T helper cells (Milich et al., 1997). Nothing is known about the HBcAg-binding naive B cell as an APC for cytotoxic T cells (CTLs); it is not likely that HBV infects B cells, which would enable HBcAg to be presented to CTLs by B cells. However, exogenous antigens endocytosed via sIg can access the class I-restricted pathway through cross-presentation (Carbone et al., 1998; Ke & Kapp, 1996; Reimann & Schirmbeck, 1999). Importantly, it was shown recently that recombinant exogenous HBcAg particles can act as a carrier for foreign CTL epitopes (Storni et al., 2002) but the underlying mechanism for this has not been elucidated. Since B cells express relatively high levels of
class I MHC molecules, they could potentially act as APCs for CD8$^+$ T cells (Bennett et al., 1998). Therefore, it is of interest to determine the importance of B cells in priming HBcAg-specific CTLs.

METHODS

Mice. C57BL/6 (B6, H-2b) mice were obtained from B&K Universal Sollentuna, Sweden. B cell-deficient H-2a mice (μMT.B6) (Kitamura et al., 1991) were kindly provided by Karin Sandstedt and Anna Berglöf, Huddinge University Hospital, Stockholm, Sweden. Mice were maintained at the animal facility at Huddinge University Hospital. All mice were used at 6–8 weeks of age and the local committee on animal ethics approved all experiments.

Recombinant proteins, peptides and plasmid DNA vectors. Recombinant particulate HBcAg (ayw subtype) encompassing residues 1–183 were produced in Escherichia coli and purified as described previously (Schoedel et al., 1993).

Recombinant HBcAg (subtype ayw) encompassing residues 1–183 and with an Ile at position 80 and a Gly at position 74 was designated HBcAg-Ala (Bichko et al., 1985). Full-length mutants of HBcAg-Ile lacking the regions 79–85 (HBcA79–85) and 76–85 (HBcA76–85), respectively, were expressed and purified from E. coli. In addition, a mutant of HBcAg-Ile in which residues 67–89 had been replaced by the same region from HBcAg subtype ayw was designated HBcAg-Ala (Table 1). E. coli-expressed HBcAg of subtype ayw with low endotoxin content was purchased from Advanced ImmunoChemical. Particle formation of HBcAg-Ile, HBcA79–85 and HBcA76–85 was confirmed by electron microscopy using a JEM-100C electron microscope at an accelerating voltage of 80 kV. The non-structural 3 protein (NS3) of hepatitis C virus (HCV) was used as a recombinant control antigen (Jin et al., 1998).

An HBcAg-derived MHC class I-binding peptide composed of residues 93–100 (HBcA93–100) (Kuober et al., 1996) was synthesized by standard techniques using a multiple peptide synthesizer and 9-fluorenylethoxycarbonyl chemistry (Syro). A Sendai virus (SeV) nucleoprotein (NP) peptide composed of residues 324–332 (FAPGNYPAL) was used as an H-2Kb-restricted control peptide (Kast et al., 1991; Schumacher et al., 1991).

Construction of a eukaryotic vector expressing HBcAg was performed as follows. DNA was extracted from the tail of an HBcAg transgenic mouse (Milich et al., 1990) and the 552 bp long HBcAg gene fragment was amplified by PCR using primers C5 (5'-ATGGACATCGACCC-TTATAAGGA-3') and CE3 (5'-CTAACACGGGATCCGGAGGATCC-GAGATTG-3'). Apal and HindIII sites were introduced using primers ClonC1 (5'-AACCTAAGCTTATGGACATCGACC-3') and ClonCE1 (5'-AAACGGGCCCTAACATTGAGATTC-3'). The resulting ampli-

Table 1. Sequence within residues 71–90 of HBcAg subtype ayw, aligned with mutant HBcAg

<table>
<thead>
<tr>
<th>Amino acid position</th>
<th>71 74 80 85 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBcAg</td>
<td>WVGNNLDPASRDVLVSYYVN</td>
</tr>
<tr>
<td>HBcAg-Ile</td>
<td>WVGNNLDPJSRDLVSYYVN</td>
</tr>
<tr>
<td>HBcA79–85</td>
<td>WVGNNLED-------------VSYYVN</td>
</tr>
<tr>
<td>HBcA76–85</td>
<td>WVGNNLED-------------VSYYVN</td>
</tr>
<tr>
<td>HBcAg-Ala</td>
<td>WVGNNLDPASRDVLVSYYVN</td>
</tr>
</tbody>
</table>

clon HBcAg DNA plasmid was sequenced to ensure the correct reading frame of the insert. In vitro translation of the HBcAg DNA plasmid was performed using the T7-Coupled Reticuloocyte Lysate system (Promega) and expression of the 21 kDa HBcAg protein was confirmed (data not shown). The plasmid DNA used for in vivo injections was purified using DNA Purification Columns (Qiagen), according to the manufacturer’s instructions.

Recombinant soluble dimeric mouse H-2Kb–Ig fusion protein used for flow cytometry analysis was purchased from Becton Dickinson. Ionomycin and phosphor myristate 13-acetate were purchased from Sigma.

Antibodies. Traditional anti-HBc mouse monoclonal antibodies (mAbs) 32/312, recognizing amino acid residues 78–83, and HBe/

Enzyme immunoassays (EIAs). The panel of HBcAg recombinant proteins was tested for recognition by previously characterized mAbs 35/312 (specific for residues 76–85 of HBcAg) and 57/8 (specific for residues 128–133 of HBcAg subtype ayw) (Pushko et al., 1994; Sallberg et al., 1993) by solid phase EIAs. In brief, recombinant proteins were coated overnight on microplates at 1 μg ml$^{-1}$ in sodium bicarbonate buffer (pH 9.6) at 4°C. Plates were incubated with primary antibodies 57/8 or 35/312 diluted in PBS containing 1 % BSA, 2 % goat sera and 0.05 % Tween 20 for 1 h. Thereafter plates were incubated with anti-mouse immunoglobulin peroxidase conjugate (P250) (Dako). All incubation steps were carried out at room temperature. Plates were developed using O-phenylenediamine substrate for 30 min and the reactions were stopped using 2 M H$_2$SO$_4$. Optical density measurements were determined at 490 nm.

Immunizations. To study humoral responses, groups of C57BL/6 mice were immunized intraperitoneally with 20 μg HBcAg, HBcAg-Ile, HBcA79–85 and HBcA76–85 in PBS. Mice were boosted 4 weeks later with the same dose of antigen. Sera were collected at weeks 2 and 6, pooled and antibody titres were determined by EIA.

To prime CTLs, groups of C57BL/6 and μMT.B6 mice were immunized with a single injection of the 100 μg HBcAg$_{93–100}$ peptide in complete Freund’s adjuvant (CFA) (Sigma), or 20 μg of recombinant protein in incomplete Freund’s adjuvant (IFA), subcutaneously at the base of the tail. Mice were sacrificed 9–13 days later.

For DNA immunizations, mice were immunized by needle injections of 100 μg of plasmid DNA encoding HBcAg. Plasmid DNA reconstituted in PBS was given intramuscularly to the tibialis anterior (TA) muscle (Lazdina et al., 2001b). At 5 days prior to DNA immunization, mice were injected intramuscularly with 50 μl per TA muscle of 0.01 mM cardiotonic (Latoxan) in 0.9 % sterile saline (Lazdina et al., 2001b). Mice were boosted at intervals of 4 weeks.

B cell enrichment. To prepare enriched naive B cells, spleens were removed from non-immune C57BL/6 mice. Single cell suspensions were prepared and depleted of red blood cells using Red Blood Cell Lysing Buffer (Sigma). T cells were depleted using a 1 : 1 : 1 ratio of supernatants from hybridomas 31M (anti-CD8), RL172.4 (anti-CD4) and AT83 (anti-Thy1.2) (kindly provided by Eva Severinson and Lena Strom, CMB, Karolinska Institutet, Sweden) plus low-toxicity rabbit complement (Saxon Europe). The cells were removed from the tail. Mice were sacrificed 9–13 days later.
incubated for 1 h at 37 °C. Resulting T cell-depleted cell populations consisted of ≥85 % CD19-positive cells, as determined by flow cytometry.

Direct binding of HBcAg to B cells. A total of 1×10⁶ T cell-depleted spleen cells from non-immune C57BL/6 mice were incubated on ice for 20 min with Fc-receptor blocking reagent (Fc-block) (Becton Dickinson) diluted in PBS containing 1 % foetal bovine serum (hereafter referred to as FACS buffer). Cells were then incubated with 1 µg of recombinant HBcAg, HBcAg-Ile, HBcΔ79–85, HBcΔ76–85, HBcAg-Ala or the control antigen HBeAg for 30 min on ice. Cells were washed and incubated with HBc/eAg-specific mAb 57/8 conjugated with sulfo-NHS-LC-biotin (Pierce). Biotinylation was done according to the protocol provided by the manufacturer. After two washes, cells were incubated on ice for 30 min with allophycocyanin-conjugated streptavidin (Becton Dickinson) and phycoerythrin (PE)-conjugated CD19 antibody (Becton Dickinson). Samples were applied to a FACSCalibur flow cytometer (Becton Dickinson) and analysed using CELLQUEST software (Becton Dickinson).

Detection of HBcAg-specific CTLs. Spleen cells from mice immunized with recombinant protein or peptide were harvested 13 days after immunization. DNA-immunized spleens were obtained 2 weeks after the second boost (6 weeks after the first injection). Single cell suspensions were prepared as described and 2.5×10⁵ splenocytes were restimulated with 25×10⁵ syngeneic irradiated (20 Gy) spleen cells pulsed with 0–0.5 µM of peptide, as described previously (Sandberg et al., 2000). Restimulation cultures were set in 12 ml complete RPMI medium. After 5 days, effector cells were harvested and washed twice. RMA-S target cells (Karre et al., 1986) were pulsed with 50 µM peptide for 90 min at 5 % CO₂ and 37 °C. Serial dilutions of effector cells were incubated with 5×10³ chromium-labelled peptide-pulsed RMA-S target cells in a final volume of 200 µl per well in 96-well plates. After a 4 h incubation at 5 % CO₂ and 37 °C, 100 µl of supernatant was collected and the radioactivity was determined using a γ-counter. The percentage of specific release was calculated according to the formula: (experimental release–spontaneous release/total release–spontaneous release) × 100. Results are shown as the mean of triplicate values.

Quantification of HBcAg₉₃–₁₀₀-specific CTLs by flow cytometry. The frequencies of HBcAg-specific CD8⁺ T cells was analysed by ex vivo staining of spleen cells from HBcAg₉₃–₁₀₀ peptide, HBcAg protein and HBcAg DNA-immunized mice using the recombinant soluble dimeric mouse H-2K¹–Ig fusion protein (Becton Dickinson). Spleen cells (1–2×10⁶) were suspended in 50 µl FACS buffer and pre-incubated with 1 µg of Fc-block per 10⁶ cells on ice for 15 min. After a single wash, cells were incubated on ice for 90 min with 3 µg of H-2K¹–Ig fusion protein per 1×10⁶ cells pre-loaded for 48 h with a 640 M excess of HBcAg₉₃–₁₀₀ peptide (MGLKFRQL) (Kuhober et al., 1996). H-2K¹–Ig fusion protein unloaded or loaded with irrelevant peptide served as control for unspecific staining. In some experiments, naive spleen cells were also included as a control for non-specific staining. After incubation with the H-2K¹–Ig fusion protein, cells were washed twice in FACS buffer and resuspended in 50 µl FACS buffer containing a 1:5 dilution of PE-conjugated rat anti-mouse IgG₁ antibody (Becton Dickinson) and incubated on ice for 30 min. Cells were washed twice and incubated with 1 µg of FITC conjugated-mouse CD8 antibody per 10⁶ cells for 30 min. After incubation, cells were washed twice and resuspended in 0.5 ml FACS buffer for immediate FACS analysis. Approximately 50–100 000 events from each sample were counted on a FACS Calibur.

RESULTS

Characterization of mutant HBcAg particles

The HBcAg-Ile, HBcΔ79–85 and HBcΔ76–85 proteins were examined by electron microscopy for particle formation. All three E. coli-derived proteins spontaneously formed virus-like particles of a comparable size (Fig. 1).

To characterize the particles further, all were tested for binding to the previously characterized mAbs 35/312, recognizing the HbC or HBe1 epitope LEDPASRDVL at residues 76–85 (Salfeld et al., 1989; Sallberg et al., 1991), and 57/8, recognizing the HBe2 epitope TPPAYR at positions 128–133 of HBcAg, by EIA (Pushko et al., 1994; Sallberg et al., 1993). As expected, mAb 35/312 was highly reactive against HBcAg and HBcAg-Ile but not reactive against particles HBcΔ79–85 and HBcΔ76–85 lacking the complete epitope region at positions 76–85 (Fig. 2). Also as expected, mAb 57/8 was reactive to all HBcAg particles (Fig. 2).

To characterize the immunogenicity of HBcAg particles in vivo, C57BL/6 mice were immunized with the different particles. C57BL/6 (H-2b⁺) mice were used since none of the deletions affects CD4⁺ T cell recognition. In general, the...
Immunized mice developed the highest antibody titres against the respective immunogen, suggesting that the particles are antigenically distinct (Fig. 3). Sera from all immunized groups were analysed by the competitive anti-HBc AXSYM Core assay (Abbott) for competition with human anti-HBc antibodies. This confirmed that HBcAg and HBcAg-Ile primed anti-HBc antibodies that compete with human antibodies (data not shown). In contrast, particles HBcΔ79–85 and HBcΔ76–85 were unable to prime antibodies with a true anti-native HBcAg specificity (data not shown). In conclusion, the three mutant HBcAg proteins form virus-like particles, have the predicted antigenicity and have a comparable overall immunogenicity. These particles were therefore suited for the ability to bind naive B cells.

Mapping of the binding site on the HBcAg particle for naive B cells

We have demonstrated previously that HBcAg binds to BCRs through a common motif expressed by germ line Ig receptors on naive B cells (Lazdina et al., 2001a). We were therefore interested to map the region on the HBcAg particle responsible for binding sIg. The panel of recombinant HBcAg particles was assayed for direct binding to naive B cells by flow cytometry, as described previously (Lazdina et al., 2001a). T cell-depleted naive splenocytes were incubated with the recombinant particles on ice to prevent endocytosis. The cells were then double stained with the biotinylated HBc/e-specific mAb 57/8 and the B cell marker CD19. Consistent with previous data (Lazdina et al., 2001a), we noted that HBcAg of the ayw subtype bound to approximately 5% of the naive B cell population (Fig. 4).
Interestingly, the HBcAg-Ile particle did not bind naive B cells (Fig. 4). This suggests that the amino acids at positions Val⁷⁴ or Ala⁸⁰ in the original HBcAg particle could be important for B cell binding (Table 1). This was confirmed further by the HBcAg-Ala particle in which region 67–89 is replaced with the spike sequence from HBcAg of adw subtype, with a Gly⁷⁴ and an Ala⁸⁰ (Table 1). Using this particle, B cell binding was restored (Fig. 4), indicating that the Ala at position 80 is important for binding sIg. The importance of the tip of the spike region of HBcAg was evaluated further using particles with deletions in the spike region. Deletion of residues 79–85 (HBc_{D79–85}) of HBcAg only slightly affected B cell binding, whereas a deletion of residues 79–85 and an inversion of positions 76–78 (HBc_{D76–85}) completely destroyed the ability to bind naive B cells (Fig. 4). This suggests that residues 76–78 also affect B cell binding and that the new loop sequence LEDVS, contained in particle HBc_{D79–85}, allows B cell binding. These experiments show that binding of HBcAg to the naive B cell is dependent on residues 76–80, present at the tip of the spike. Thus, we confirmed that mutant HBcAg proteins formed virus-like particles but had different abilities to bind naive B cells.

The role of HBcAg-binding B cells in the priming of HBcAg-specific CTL responses by endogeous and exogenous HBcAg

B cells are efficient APCs when presenting HBcAg to CD⁴⁺T cells (Milich <i>et al.</i>, 1997). However, it is unknown whether B cells play any role in the priming of HBcAg-specific CTL responses. To address this question, wild-type and B cell-deficient mice (μMT.B6) (Kitamura <i>et al.</i>, 1991) were immunized with endogenously or exogenously produced forms of HBcAg. Immunization with HBcAg as a peptide CTL epitope or an endogenously produced antigen (i.e. DNA-based immunization), efficiently primed HBcAg-specific CTLs in both wild-type and B cell-deficient mice,
thus independently of B cells (Fig. 5). DNA immunization did prime HBcAg-specific antibodies at titres of 10^3–10^4. Surprisingly, HBcAg-specific CTL activity could be primed in wild-type but not in B cell-deficient mice immunized with recombinant HBcAg particles. Splenocytes from naive mice restimulated with the HBcAg-derived CTL peptide did not show CTL activity (data not shown). In additional control experiments, mice were immunized with irrelevant recombinant protein (HCV NS3) and no detectable HBcAg-specific CTL activity was observed (data not shown). Also, restimulation with an irrelevant $H-2K^b$-restricted peptide from SeV NP failed to activate HBcAg-specific CTLs in vitro (data not shown).

Enumeration of HBcAg-specific CD8$^+$ T cells by direct ex vivo staining with dimeric H-2Kb–Ig fusion protein

To confirm the results obtained by the lytic assays, the frequency of HBcAg93–100-specific CD8$^+$ T cell precursors after HBcAg immunization was determined directly ex vivo. Spleen cells were stained with recombinant soluble dimeric mouse H-2Kb–Ig fusion protein loaded with the HBcAg93–100 peptide. Although a single immunization with exogenous HBcAg particles primed HBcAg-specific lytic CTL responses comparable to that primed by HBcAg peptide or HBcAg DNA immunizations, the frequency of HBcAg93–100 peptide-specific CD8$^+$ CTLs was very low (0–0.4%; mean value 0.1%, $n=4$) in wild-type mice (Fig. 6). Importantly, after a short (5 days) restimulation in vitro with HBcAg93–100 peptide, the frequencies of HBcAg peptide-specific CD8$^+$ T cells increased (mean value 0.7%).

No HBcAg-specific CTL precursors could be detected in B cell-deficient mice immunized with exogenous HBcAg particles and they were still undetectable after restimulation in vitro. These data are fully consistent with the cytotoxicity data (Fig. 5). Altogether, HBcAg as an endogenously produced antigen primes CTLs efficiently in wild-type and B cell-deficient mice at high frequencies. In contrast, exogenous HBcAg primes low frequencies of HBcAg-specific CTLs and requires the presence of B cells.

Exogenous HBc particles unable to bind naive B cells do not prime specific CTLs

To test further the importance of HBcAg-binding naive B cells in the priming of CTLs using exogenous particles, groups of wild-type mice were immunized with recombinant HBcAg and HBcA76–85 particles. Fully consistent with previous data, native HBcAg did prime CTLs in vivo as an exogenous antigen (Fig. 7). In contrast, HBcA76–85 particles, unable to bind naive B cells, did not prime HBcAg-specific CTLs as an exogenous antigen (Fig. 7). Thus, despite the presence of B cells, the HBcA76–85 particle was unable to prime CTLs. This is fully consistent with the

![Fig. 6](image)

Fig. 6. The frequencies of HBcAg-specific CD8$^+$ T cells estimated by direct ex vivo staining of splenocytes from HBcAg93–100 peptide, HBcAg protein and HBcAg DNA immunized mice. In addition, cells derived from protein-immunized mice were also stained after in vitro peptide restimulation. Cells were stained with recombinant soluble dimeric mouse H-2Kb–Ig fusion protein pre-loaded with HBcAg93–100 peptide and CD8 mAb, as described in Methods. Results are the mean values ± SEM from three to five individual mice.

![Fig. 7](image)

Fig. 7. Detection of cytolytic activity in recombinant (a) HBcAg- and (b) HBcA76–85-primed C57BL/6 mice. The experiment was performed as described in Fig. 5. Splenocytes were restimulated in vitro with HBcAg93–100 peptide and peptide-coated RMA-S cells served as targets. (a) The lytic activity of splenocytes from three mice immunized with HBcAg is shown. (b) The lytic activity of splenocytes from three HBcA76–85-immunized mice is shown.
inability of HBcAg particles to prime CTLs in the B cell-deficient mice and confirms a key role of B cells in priming CTLs using exogenous HBcAg.

DISCUSSION

It has been shown that HBcAg is a unique B cell immunogen binding to a high frequency of naive murine as well as human B cells. This interaction with naive murine B cells is mediated through conserved motifs encoded by some germ line gene families (Lazdina et al., 2001a). Previous experiments suggested that the spike region of HBcAg was involved in the binding of naive B cells (Lazdina et al., 2001a). The present studies confirmed that residues 76–80 located at the tip of the spikes on the HBcAg particle are indeed involved in binding the naive B cell receptor. Interestingly, immunization of mice with mutant HBcAg particles revealed no significant difference in the ability to elicit high levels of antibodies. Thus, B cell immunogenicity of HBcAg seems to be independent of its ability to bind to a high frequency of naive B cells and is possibly more related to the ability of the particle to prime CD4⁺ T cells.

It has been shown that exogenous antigen is taken up by endocytosis and can reach the MHC I compartment rendering B cells susceptible to lysis by specific class I-restricted CD8⁺ T cells (Ke & Kapp, 1996). HBsAg-specific B cells are able to present exogenous HBsAg to HBsAg-specific MHC class I-restricted CD8⁺ T cells (Barnaba et al., 1990). To study the role of B cells in priming CTLs by endogenously and exogenously produced HBcAg, we immunized wild-type and B cell-deficient mice. HBcAg-specific CTLs were detected by *in vitro* cytotoxicity assays and quantified directly *ex vivo* by flow cytometry. These experiments showed that B cells were not required for CTL priming by the HBcAg-derived CTL peptide or endogenously produced HBcAg, we immunized wild-type and B cell-deficient mice. Exogenous HBcAg primed *in vitro* active CTLs at very low precursor frequencies in wild-type mice. Importantly, the mutant HBcAg particle lacking residues 76–85 at the spike region and unable to bind naive B cells could not prime HBcAg-specific CTLs when used as an exogenous immunogen in the presence of B cells. This clearly shows that the priming of HBcAg-specific CTLs by exogenous HBcAg is B cell dependent.

There are several mechanisms by which exogenous HBcAg may prime CTLs in a B cell-dependent fashion. First, the role of HBcAg-binding B cells could be as the primary APC for CD8⁺ T cells through a leakage between the class I and class II antigen-presenting pathways. Alternatively, B cells may produce HBcAg-specific antibodies that form immune complexes with HBcAg. These immune complexes could then be taken up by macrophages or dendritic cells via Fc-R-mediated endocytosis and thereafter processed and presented to CD8⁺ T cells (Schuurhuis et al., 2002). Since we know that immunization with the HBcA76–85 particle, which is unable to prime CTLs, elicits antibodies in wild-type mice, we would favour the first hypothesis. Additional explanations may be that other cells, such as CD4⁺ T cells, are participating in CTL priming and the priming of these cells may be insufficient in the absence of B cells or when the particle is unable to engage naive B cells effectively. However, further experiments are needed to fully understand this.

In conclusion, endogenously produced HBcAg primes HBcAg-specific CTLs effectively at a high precursor frequency independently of the presence of B cells. However, binding of particulate HBcAg by naive B cells is pivotal in priming HBcAg-specific CTLs using exogenous HBcAg. These findings have clear implications for vaccine design using recombinant HBcAg particles and suggest that exogenous HBcAg released from infected hepatocytes could possibly regulate the CTL response through B cells.

ACKNOWLEDGEMENTS

The study was supported by grant #3825-B99-04XAC from the Cancer Foundation.

REFERENCES

Lazdina, U., Huhtgren, C., Frelin, L. & 8 other authors (2001b). Humoral and CD4+ T helper (Th) cell responses to the hepatitis C virus non-structural 3 (NS3) protein: NS3 primes Th1-like responses more effectively as a DNA-based immunogen than as a recombinant protein. J Gen Virol 82, 1299–1308.

