Long-term CD8⁺ T cell memory to Sendai virus elicited by DNA vaccination

Yongjin Chen,¹, ² Edward J. Usherwood,¹ Sherri L. Surman,¹ Twala L. Hogg¹ and David L. Woodland¹, ²

¹ Department of Immunology, St Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
² Department of Pathology, University of Tennessee, Memphis, TN 38163, USA

The capacity of DNA vaccines to prime CD8⁺ T cells makes them excellent candidates for vaccines that are designed to emphasize cellular immunity. However, the long-term stability of CD8⁺ T cell memory induced by DNA vaccination is poorly characterized. Here, the quality of CD8⁺ T cell recall responses in mice was investigated more than 1 year after DNA vaccination with the Sendai virus nucleoprotein gene. Cytotoxic T lymphocyte (CTL) activity specific for both dominant and subdominant epitopes could be recalled readily 1 year after vaccination and the frequencies of CTL precursors specific for both of these epitopes were relatively high. These CTL responded strongly to subsequent Sendai virus infection in terms of their ability to migrate to the lung and to differentiate into effector cells. In addition, the recall response to virus infection, as determined by CTL activity in the lungs and IFN-γ responses in the spleen, was both faster and greater in magnitude than that in control-immunized mice. Significantly, virus titres were reduced at least 100-fold in the lungs of mice that were immunized more than 1 year before infection, as compared with control mice. These data demonstrate that CD8⁺ T cell memory elicited by DNA vaccination is functionally relevant and persists for at least 1 year.

Introduction

DNA vaccination has been shown to prime potent cytotoxic T lymphocyte (CTL) responses specific for a variety of viral antigens in animal models (Boyer et al., 1997; Cardoso et al., 1996; Chen et al., 1998; Davis et al., 1995; Gonzalez Armas et al., 1996; Lagging et al., 1995; Lu et al., 1996; Manning et al., 1997; Ulmer et al., 1993; Yasutomi et al., 1996; Yokoyama et al., 1995; Zarozinski et al., 1995). This priming is surprisingly broad, inasmuch as CTL precursors (CTLp) are induced for both dominant and subdominant epitopes (Chen et al., 1998; Fu et al., 1997). It is currently believed that viral antigens encoded by DNA vaccines are expressed intracellularly in vivo, thus gaining access to the MHC class I pathway to elicit CTL activity. This property of DNA vaccines offers a substantial advantage over subunit vaccines and inactivated virus vaccines in that they can elicit CD8⁺ T cell responses in addition to humoral responses. Most experiments analysing the CTL response elicited by DNA vaccines have been performed within weeks of DNA immunization, and reports on long-term memory T cell responses induced by DNA immunization are very limited. It has been demonstrated that intramuscular (i.m.) or intradermal injection of DNA encoding influenza virus nucleoprotein (NP) can prime CTL that can be recalled more than 1 year after vaccination (Raz et al., 1994; Yankauckas et al., 1993) and that CTLp specific against Env or Gag of SIVmac were detectable in macaques almost 6 months after i.m. or gene gun immunization (Lu et al., 1996). However, there have been no studies on the quality of long-lived memory CTLp induced by DNA vaccination. For example, it is not clear whether the frequencies of CTLp primed by DNA vaccines remain stable over time or whether long-lived CTLp specific for both dominant and subdominant epitopes retain the capacity to mediate a functional recall response. In addition, there is no information on the capacity of long-lived CTLp induced by DNA vaccination to clear virus in vivo.

We have previously described an extensive analysis of the induction of protective CD8⁺ T cell memory to Sendai virus by a DNA vaccine encoding the NP gene. These studies focussed...
on the quality of memory induced within 2 months of vaccination. In the current report, we analysed the quality of memory CTLp induced by the same protocol more than 1 year after vaccination. The data show that gene gun-mediated vaccination with DNA encoding Sendai virus NP elicited long-lasting memory CTL specific to both dominant and subdominant epitopes. The CTLp frequency remained relatively high more than 1 year after immunization. These memory T cells functioned vigorously in vitro and reduced the virus titre in the lungs greatly following virus infection.

Methods

Mice. Female C57BL/6 (K1/D9) mice and B6.C-H-2bm1 (Kbm1/D9) mice were purchased from Jackson Laboratories. All mice were held under specific pathogen-free conditions until virus infection.

Cell lines and culture conditions. The L929-Kc, L929-Da and SVBM1 (Kbm/Da) cells have been described previously (Ostrand-Rosenberg et al., 1991; Whitmore & Grooding, 1981). All cell lines were cultured in complete medium (CTM) (Kappler et al., 1981) at 37 °C in the presence of 10% CO\textsubscript{2}. L929-Da cells were cultured in CTM with 0.5 mg/ml G418. Restimulation of NP324-332 specific T cells in vitro was performed as described previously (Chen et al., 1998). Briefly, spleen cells obtained from DNA-vaccinated mice were processed with cell striainers and depleted of erythrocytes with Gey's solution. Spleen cells (1 x 107) were incubated with 1 x 105 irradiated syngeneic splenocytes in 4 ml CTM supplemented with 0.5 μg/ml NP324-332 and 10 U human recombinant IL-2 (rIL-2) in a 12-well tissue culture plate for 5–6 days.

DNA vaccine and immunization of mice. Plasmids pJW4303 and pJW-SNP, which contains the cDNA for Sendai virus NP, have been described previously (Chen et al., 1998) and were purified with a Qiagen Maxiprep Kit. Eight- to 12-week-old C57BL/6 and B6.C-H-2bm1 mice were vaccinated twice with either pJW4303 or pJW-SNP at 3-week intervals by using an Accell gene gun as described previously (Chen et al., 1998). Briefly, 40 μg pJW-SNP or pJW4303 was coated onto 25 mg 21 μm-diameter gold beads in the presence of 100 μl 1 M CaCl\textsubscript{2} and 100 μl 0.05 M spermidine. The beads were then washed three times with ethanol and resuspended in 3-6 ml ethanol in the presence of 0.1 mg/ml polyvinylpyrrolidone. The DNA–gold was loaded onto the interior surface of a piece of Tefzel tubing by using a tube loader. The tubing was then cut into 1-2 cm segments, each of which contained approximately 0.4–0.6 μg DNA. Mice received DNA from a single tube segment on a shaved region of the abdomen with each vaccination. The mice used in these experiments were vaccinated at the same time as the mice used for our previous study (Chen et al., 1998) and were maintained under specific pathogen-free conditions until sacrificed for tissue analysis or infected with Sendai virus.

Synthetic peptides. NP324-332 from Sendai virus NP (Kast et al., 1991) and NP364-374 from influenza A virus NP (Townsend et al., 1986) were synthesized at St Jude Children's Research Hospital Molecular Resources Center by fast Fmoc chemistry on an ABI model 431A peptide synthesizer. The peptides were diluted in PBS at 1 nM.

Virus infection and collection of bronchoalveolar lavage (BAL). The Enders strain of Sendai virus was prepared and stored as described previously (Cole et al., 1994; Hou et al., 1992). Mice were anesthetized by intraperitoneal injection with avertin and infected intranasally (i.n.) with 330–660 50% egg infectious doses (EID\textsubscript{50}) of Sendai virus. BAL cells were collected and pooled from between six and ten mice per group as described previously (Chen et al., 1998). The cells were then allowed to adhere to a T75 flask for 1 h at room temperature to remove adherent cells and the erythrocytes were lysed with Gey’s solution.

Titration of virus in the lungs. Lungs from individual mice were excised 6 days after infection i.n. with 600 EID\textsubscript{50} Sendai virus and homogenized in 1 ml PBS. Three mice were used per group. The homogenate was diluted serially in antibiotic solution containing 5 x 105 U/ml polymyxin B sulphate, 5 x 105 U/ml penicillin G (potassium salt) and 10 μg/ml streptomycin sulphate in PBS and inoculated into embryonated hen’s eggs (0.1 ml per egg). The eggs were incubated at 37 °C for 2 days and then stored at 4 °C overnight. Allantoic fluid from each egg was incubated with an equal volume of 0.5% (w/v) chicken erythrocytes in 96-well, round-bottomed tissue culture plates. The presence of Sendai virus was indicated by the agglutination of erythrocytes after 45 min at room temperature.

Cytotoxicity assay. Cytotoxic activity was determined as described previously (Chen et al., 1998). Briefly, various target cells labelled with Na25CrO\textsubscript{4} were either infected with Sendai virus or incubated with the NP324-332 peptide. Target cells were incubated with graded numbers of effector cells in 96-well plates at 37 °C for 4 h. Supernatants (80–100 μl) were collected from each well and 40-Cr-release was measured with a gamma-counter. The percentage of specific release was calculated as 100 x (experimental release – spontaneous release)/(maximum release – spontaneous release). Spontaneous release was typically less than 20% of the total release induced by 1% Triton X-100.

Limiting dilution analysis (LDA). CTLp frequencies were measured by LDA as described previously (Allan et al., 1990; Cole et al., 1997; Hou et al., 1993). Briefly, spleen cells pooled from three vaccinated mice were diluted serially and co-cultured with 5 x 103 irradiated C57BL/6 spleen cells in the presence of 0.5 μg/ml NP324-332 peptide and 10 U/ml human rIL-2. The cultures were set up in a final volume of 200 μl in 96-well round-bottomed tissue culture plates. After 7 days, cells from individual wells were tested in a 6 h cytotoxicity assay on 2 x 104 51Cr-labelled L929-Kc cells and L929-Da cells pulsed with or without the NP324-332 peptide. Minimal estimates of CTLp frequency were determined according to the Poisson equation using λ analysis. This gives rise to the minimal frequency estimate and 95% confidence intervals (Allan et al., 1990; Hou et al., 1993).

Intracellular cytokine staining. Splenocytes from individual vaccinated mice were depleted of B cells by panning in flasks coated with Affinipure goat anti-mouse IgG (H+L) (Jackson ImmunoResearch). Three mice were used per group. The B cell-depleted splenocytes were cultured in 96-well round-bottomed tissue culture plates at 5 x 105 per well in 200 μl CTM supplemented with 10 μg/ml brefeldin A (BFA) and 10 U/ml human rIL-2. Sendai virus NP324-332 or influenza virus NP364-374 peptides were then added at final concentrations of 1 μg/ml and the cells were incubated for 5 h at 37 °C. Positive controls were set up in parallel in which phorbol myristic acid and ionomycin were added to final concentrations of 50 nM and 500 nM, respectively. After incubation, the cells were washed twice with staining wash buffer (0.2% foetal calf serum and 0.1% sodium azide in PBS) supplemented with 10 μl/ml BFA prior to incubation with 50 μl anti-FcγRI/II receptor and anti-mouse CD16/32 (Pharmingen) antibodies for 10 min on ice. The cells were then stained with rat anti-mouse Tri-color-conjugated CD69 (Caltag) in staining wash buffer supplemented with 10 μl/ml BFA for 20 min on ice. Cells were fixed with 1% formaldehyde in PBS for 20 min at room temperature and then permeabilized by incubation with 0.5% (w/v) saponin in staining wash buffer for 10 min at room temperature. Finally, permeabilized cells...
Results

DNA immunization induces long-term memory CTLp specific for both dominant and subdominant epitopes

We have shown previously that gene gun immunization of C57BL/6 mice with the Sendai virus NP gene induced memory CTLp specific for both dominant (NP_{324-332}/K\(^b\)) and subdominant (NP_{324-332}/D\(^b\)) epitopes (Chen et al., 1998). However, the CTL responses in these experiments were measured only a few weeks after immunization. To investigate the longevity of DNA vaccine-primed memory CTLp, we analysed C57BL/6 mice that had been immunized more than 1 year earlier with either pJW-SNP or pJW4303. This was the same cohort of mice used in the previous report (Chen et al., 1998) and had been vaccinated at the same time. Spleen cells from individual mice were restimulated in vitro with the NP_{324-332} peptide and tested for their lytic activity against NP_{324-332}-pulsed L929-K\(^b\) and L929-D\(^b\) cells. As expected, antigen-specific CTL activity was not recovered from the spleen cells of control pJW4303-immunized mice (Fig. 1A). In contrast, potent CTL activity specific for both dominant NP_{324-332}/K\(^b\) and subdominant NP_{324-332}/D\(^b\) epitopes was readily detected in pJW-SNP-immunized mice (Fig. 1B). These cells were also strongly lytic against L929-K\(^b\) and L929-D\(^b\) target cells that had been infected with Sendai virus. To quantify this recall CTL response, we measured the frequencies of CTLp specific for these two epitopes by LDA. As shown in Table 1, relatively high frequencies of CTLp specific for both dominant and subdominant epitopes (in the order of 1:40000 and 1:60000 spleen cells, respectively) were maintained more than 1 year after the final DNA vaccination. These frequencies are only 2–3-fold lower than the frequencies in spleen cells from mice immunized with pJW-SNP less than 8 weeks before (approximately 1:20000 spleen cells or 1:2000 CD8\(^+\) T cells) (Chen et al., 1998; Cole et al., 1997). These data demonstrate that memory CTLp primed by DNA vaccination persist long after DNA vaccination.

Long-term memory CTLp primed by DNA vaccination are functional in vivo

We next asked whether the long-lived memory CTLp primed by DNA vaccination remained functional in vivo, in terms of their ability to respond to an infection in the lung. To address this issue, we took advantage of a system that assesses the migration of memory CD8\(^+\) T cells to the site of virus infection (Cole et al., 1997). Previous studies have shown that CD8\(^+\) T cells specific for subdominant Sendai virus epitopes constitute only a minor proportion of the acute CTL response to Sendai virus infection. However, if CD8\(^+\) T cells specific for subdominant epitopes are first exclusively primed by vaccination, these cells then dominate the response to a subsequent Sendai virus infection in the lung, reversing the immunodominance pattern. The CTL response to Sendai virus infection in the lungs of B6.C.H-2\(^b\) mice is directed predominantly against a haemagglutinin-derived epitope, HN_{58-66}/K\(^b\), with little or no detectable effector response to the subdominant NP_{324-332}/D\(^b\) epitope. Thus, mice were vaccinated with pJW4303 (control) or with pJW-SNP, which specifically primes CD8\(^+\) T cells specific for the subdominant NP_{324-332}/D\(^b\) epitope but not the dominant HN/K\(^b\) epitope. Thirty-five weeks after the last immunization, mice were infected i.n. with Sendai virus and the BAL was collected 8 days later and assayed for the presence of CTL specific for the subdominant NP_{324-332}/D\(^b\) epitope. As shown in Fig. 2, no NP_{324-332}/D\(^b\)-specific lytic activity was detected in the BAL of mice that had been immunized with pJW4303. In contrast, strong NP_{324-332}/ D\(^b\)-specific lytic activity was detected in the BAL of mice that had been immunized with pJW-SNP. These data confirm that the long-lived memory CTLp induced by DNA vaccination were functional, in terms of their ability to mediate a recall effector response to Sendai virus infection in vivo.

Long-term memory CTLp elicited by DNA vaccination respond rapidly to Sendai virus infection

We next investigated whether DNA-primed CTLp could mediate a secondary CTL response at the site of virus infection in vivo by analysing the kinetics of the CTL response to Sendai virus in two groups of C57BL/6 mice immunized 13 months before with either pJW4303 or pJW-SNP. On different days...
Table 1. Frequency of NP_{324–332}^{K^b}- and NP_{324–332}^{D^b}-specific CTLp induced by DNA vaccination with pJW-SNP

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Time since last immunization(^*) (months)</th>
<th>Reciprocal of CTLp frequency (95% confidence limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NP_{324–332}^{K^b}</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>53,874 (48,770–59,504)</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>33,069 (25,581–42,089)</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>27,738 (23,573–32,367)</td>
</tr>
</tbody>
</table>

\(^*\) The primary immunization was followed 4 months later by two immunizations at 3 week intervals.

Fig. 2. Long-term memory CD8 T cells specific for the subdominant epitope migrate to the lung after Sendai virus infection. B6-H-2^bm1 mice immunized with pJW4303 (A) or pJW-SNP (B) 35 weeks before and infected with Sendai virus (330 EID\(_{50}\)) Eight days after infection, pooled BAL cells from each group of mice were tested for lysis of L-D\(^b\) cells (□) and NP_{324–332}-pulsed L-D\(^b\) cells (■). The data are representative of two independent experiments. E:T, effector:target.

Fig. 3. DNA immunization induces long-term memory CD8 T cells that respond rapidly to virus infection. C57BL/6 mice immunized 13 months before with pJW-SNP (■) or pJW4303 (□) were infected with Sendai virus. The lytic activity of pooled BAL cells was tested on NP_{324–332}-pulsed L-K\(^b\) cells on day 5–5 (A), day 6–5 (B) and day 8–5 (C) after infection. E:T, effector:target.

dominant NP_{324–332} peptide was at background levels in both pJW4303- and pJW-SNP-vaccinated mice (Table 2). In contrast, 7 days after i.n. Sendai virus infection, up to 10% of CD8\(^{+}\) T cells from spleens of mice immunized with pJW-SNP produced IFN-\(\gamma\) in response to the NP_{324–332} peptide. There was a minimal increase in the percentage of specific CD8\(^{+}\) T cells from blank vector-immunized mice at this time after infection. These data indicate that mice vaccinated more than 16 months before retained long-lasting memory CTLp that could be recalled quickly in the presence of virus infection.

Control of Sendai virus infection after long-term DNA vaccination

We next wanted to determine whether long-term DNA vaccination conferred some form of protection against Sendai virus infection. The normal approach would be to determine whether vaccination protected the animals against a lethal dose of Sendai virus. However, this is not feasible in mice over 1 year old, as the LD\(_{50}\) of Sendai virus increases substantially with age. Therefore, as an alternative, we assessed virus clearance from the lungs of vaccinated and control mice.
Table 2. Percentage of IFN-γ-positive CD8+ cells in spleens of immunized mice

C57BL/6 mice were immunized with pJW4303 or pJW-SNP twice at 3 week intervals. Approximately 16 months after the last immunization, spleens from uninfected mice or mice infected i.n. 7 days earlier with 660 EID50 Sendai virus were stained for IFN-γ. Three animals were used for each combination of vaccination and infection (12 animals in total). The data are presented for each individual animal. Peptides were Sendai virus (SV) NP663–673 and influenza virus (Flu) NP366–371. ND, Not done.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Peptide</th>
<th>pJW4303</th>
<th></th>
<th></th>
<th>pJW-SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>#2</td>
<td>#3</td>
<td>#1</td>
</tr>
<tr>
<td>Uninfected</td>
<td>SV NP663–673</td>
<td>0.4</td>
<td>0.6</td>
<td>ND</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Flu NP366–371</td>
<td>0.4</td>
<td>0.0</td>
<td>ND</td>
<td>0.4</td>
</tr>
<tr>
<td>Sendai virus-infected</td>
<td>SV NP663–673</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>6.7*</td>
</tr>
<tr>
<td></td>
<td>Flu NP366–371</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* The IFN-γ response to SV NP663–673 was significantly different from the response in control vaccinated animals or uninfected animals (P < 0.05 by Student’s t test).

Table 3. Virus titres in lungs from Sendai virus-infected mice

C57BL/6 mice were immunized with pJW4303 or pJW-SNP twice at 3 week intervals. A year after the final vaccination, mice were infected i.n. with 660 EID50 Sendai virus and lungs were collected 6 days later. Ten-fold serial dilutions of lung homogenates were inoculated into hens’ eggs and the presence of virus was detected by a haemagglutination test. The virus titre given (as log10) is the highest dilution to give haemagglutination in at least two of three eggs. The data are from three individual mice and are significantly different in vaccinated versus control animals (P < 0.05 by Student’s t test).

<table>
<thead>
<tr>
<th>Mouse</th>
<th>pJW4303</th>
<th>pJW-SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>4</td>
<td>< 2</td>
</tr>
<tr>
<td>#2</td>
<td>7</td>
<td>< 2</td>
</tr>
<tr>
<td>#3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

directly. Mice were immunized with pJW4303 or pJW-SNP and were infected i.n. with Sendai virus 12.5 months later. Six days post-infection, the lungs were removed and serial dilutions of lung homogenates were inoculated into the allantoic cavity of eggs. As shown in Table 3, the virus titres in lungs from pJW-SNP-vaccinated mice were reduced 10–100-fold compared with control mice. These data demonstrated that long-term DNA vaccination resulted in accelerated virus clearance.

Discussion

One of the key properties of DNA vaccines is that they are able to elicit strong and protective populations of memory CTLp. However, the stability and function of long-term CTLp generated by DNA vaccines are poorly characterized. Here, we performed a detailed analysis of the quality of the CTLp that persisted more than 1 year after the final vaccination. The data show that the frequency of CTLp specific for both dominant and subdominant epitopes from spleens of mice vaccinated more than a year before remained relatively stable, with only a 2–3-fold reduction relative to recently vaccinated mice. Moreover, these cells were able to respond rapidly to infection, in terms of their ability to migrate to the site of infection and to differentiate into effector cells capable of lysing virus-infected cells and secreting IFN-γ. Thus, vaccinated mice mounted a classical secondary response to Sendai virus infection that was very similar to that seen in secondary responses to other respiratory virus infections. These data therefore indicate that the CD8+ T cell memory induced by DNA vaccination is highly functional and persists for a substantial period of time.

It is still the subject of controversy whether antigen is required to maintain memory CD8 T cells (Ahmed & Gray, 1996; Asano & Ahmed, 1996; Di Rosa & Matzinger, 1996; Gray & Matzinger, 1991; 1994; Lau et al., 1994). Although no studies have been done to address similar questions with respect to DNA vaccination, foreign proteins could be expressed in vivo long after the delivery of DNA vaccines. For example, influenza virus NP was detected in dermal tissues 1 month after intradermal injection (Raz et al., 1994). Similarly, luciferase remained active in muscle cells 19 months after i.m. injection of the corresponding plasmid DNA (Wolf et al., 1992). In the case of gene gun immunization, epidermal expression after immunization tends to be transient, due to the normal sloughing process (Pertmer et al., 1995; Torres et al., 1997), although transfected cells that migrate to the draining lymph nodes can express the encoded protein for a longer time. In contrast, Davis et al. (1997) showed that
transfected muscle fibres were destroyed by immune responses within 10 days of i.m. vaccination with DNA. Whether continuous protein expression is needed to maintain T cell memory elicited by a DNA vaccine is far from clear.

The mechanism by which gene gun-mediated DNA vaccination primes memory CTLp is poorly understood. It is known that gene gun bombardment mediates direct transfection of epidermal and dermal cells, leading to the expression of the encoded foreign proteins. Interestingly, the epidermis contains about 3–8% Langerhans’ cells, which can migrate to the local lymph nodes and potentially function as professional antigen-presenting cells (Condon et al., 1996). In support of this general idea, it has been shown that vaccinated skin must be present for at least 3 days to elicit an optimal CTL response (Torres et al., 1997). Klinman et al. (1998) reported that induction of a primary T cell response requires that the transfected skin be present for at least 3 days, whereas only 5 h was needed for the development of a memory T cell response. Taken together, these data suggest that T cell priming requires either that enough antigen is expressed or that sufficient numbers of antigen-presenting cells migrate to the local lymph nodes.

More than five years after the first demonstration of the protective effect of DNA vaccines (Ulmer et al., 1993), the field of DNA vaccine biology has entered the clinical trial phase (Calarota et al., 1998; MacGregor et al., 1998). However, the long-term effects of DNA vaccination on the immune system are still unknown. This report analysed memory CTLp induced by a DNA vaccine and showed that the CTLp primed more than 1 year before could mount a vigorous response that accelerated virus clearance, suggesting that DNA vaccines could fulfil the requirement for long-lasting immunity. The data not only provide new information concerning memory CTLp elicited by gene gun immunization, but could also provide guidance for future experiments with DNA vaccines on larger animals.

The authors would like to thank Robert G. Webster, Chiu-Chen Huang and David Topham for advice and help and Geniva Corporation for providing the gene gun and gold beads. This work was supported by NIH grants AI37597 (D.L.W.), P30 CA21765 (Cancer Center Support CORE Grant) and the American Lebanese Syrian Associated Charities (ALSAC).

References

Received 13 January 1999; Accepted 24 February 1999