Characterization of cis-acting elements affecting strength and phloem specificity of the coconut foliar decay virus promoter

Alain Hehn† and Wolfgang Rohde

MPI für Züchtungsforchung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany

During replication in its host plant, coconut foliar decay virus (CFDV) remains restricted to the phloem tissue. Previous in vivo studies on subgenomic CFDV DNA had provided evidence for the phloem specificity of the CFDV promoter. Here, new promoter constructs are described which are distinguished by the presence or absence of various cis-acting signals and which gave rise to a 16-fold higher reporter gene (β-glucuronidase) activity (reaching 30% of the cauliflower mosaic virus 35S promoter) in tobacco protoplasts, while the phloem specificity in transgenic tobacco plants was conserved. Surprisingly, the CFDV stem–loop structure dramatically influenced transcriptional efficiency. From these studies and sequence comparisons with other phloem-specific promoters, cis-signals involved in CFDV promoter strength and tissue specificity were identified.

Fig. 1. CFDV promoter constructs and their in vivo activities. (A) Schematic representation of genomic and subgenomic CFDV fragments used for CFDV-GUS constructs on the basis of XhoI-linearized double-stranded CFDV DNA. Large black arrows represent ORFs 1–4 on the positive-sense strand. RPT, repeated sequence; 52bp, DNA stretch homologous to CoYMV; SL, stem–loop homologous to geminivirus stem–loop. (B) Transient expression experiments in N. tabacum protoplasts. GUS activity was calculated relative to the CaMV 35S 17K-GUS control. The boxes represent the mean of n experiments and the error bars correspond to the standard deviation; n is the number of independent experiments (for each experiment, three transformations were performed). (C) GUS activity of CFDV-GUS constructs in E. coli JM109. Results are represented as the absolute value in fluorimetric units/µl bacterial culture. The error bars correspond to the standard deviation for n colonies tested.

Foliar decay disease affects coconut (Cocos nucifera L.) palms introduced into Vanuatu, while the local coconut ecotypes are tolerant to the disease (Calves et al., 1980). It is caused by coconut foliar decay virus (CFDV), which is transmitted by the plant hopper Myndus taffini (Julia et al., 1985). The 20 nm CFDV particles (Randles & Hanold, 1989) contain a unique, circular covalently closed, single-stranded DNA molecule of 1291 nucleotides (nt) with the potential to encode at least six viral proteins of molecular mass greater than 5 kDa (Rohde et al., 1990). Based on these properties CFDV, together with banana bunchy top virus (Harding et al., 1993; Wu et al., 1994), subterranean clover stunt virus (Boevink et al., 1995) and faba bean necrotic yellow virus (Katul et al., 1995), is a member of a new plant virus group.

As pointed out previously (Rohde et al., 1990, 1994), CFDV shares several structural and sequence homologies with other viruses. A potential stem–loop (SL) located at position 941–962 (Fig. 1A) is highly homologous to the SL structure characteristic of geminiviruses and involved in geminivirus replication (Orozco & Hanley-Bowdoin, 1996). A further loop...
sequence, CGAAG, and its arrangement in two directly repeated stem–loop sequences (nt 658–676 and nt 685–701; RPT in Fig. 1A) display sequence and structural homologies with the as–1 sequence of the cauliflower mosaic virus (CaMV) 35S promoter (Lam et al., 1989). Finally, a stretch of 52 nt (position 734–785) shares 68% identity with a sequence (nt 7277–7226) of the phloem-specific *Commmelina* yellow mottle badnavirus (*CoYMV*; Medbery et al., 1992). Full-length and subgenomic fragments of double-stranded, *Xho* linearized CFDV DNA in fusion with the *uidA* (β-glucuronidase, GUS) reporter gene displayed phloem-specific promoter activity in stably transformed tobacco plants and measurable, but low, activity as compared to the CaMV 35S promoter in transient expression experiments (Rohde et al., 1994). Here, we describe further promoter studies in an effort to localize *cis*-acting signals important for phloem specificity.

For these studies, two sets of subgenomic CFDV DNAs differing by the absence or presence of the SL structure were constructed by PCR using appropriate primers and introducing additional restriction sites (5’ end, *HindIII*; 3’ end, *NcoI*; Fig. 1A). The 3’ primer which conserved the SL structure was GGA TCC ATG GGG TTA GCA GAG GAG GTT GG (the *NcoI* site is indicated in bold, the CFDV-homologous sequence is underlined); the 3’ primer resulting in deletion of the SL structure was GGA TCC ATG GTA ATA CTA GCC CCC CCC GGG. The subgenomic fragments CF2 and CF7 start at position 211 (5’ primer GCC AAG CTT ATC GGA GAG CCA GCC GA, *HindIII* site in bold); CF4 and CF9 start at position 611 (5’ primer GCC AAG CTT ATA CCC GCC CGC CCA CG), and CF5 and CF10 start at position 711 (5’ primer GCC AAG CTT AAT CGA GGT ATG GCC GGG). For CF27 (start at position 895), three nucleotides of the wild-type CFDV sequence were mutated in order to create a *HindIII* site (GGG ACC GCT TAG TGG CCC CAC AAA CC). The PCR products were digested with *HindIII* and *NcoI* and introduced into the pRT2-syn-GUS vector derived from pRT2-syn-LUC (Turner et al., 1994) by removing the luciferase gene by *NcoI/BamHI* digestion and replacing it by the GUS reporter gene. The *HindIII* site located downstream of the CaMV 35S terminator was filled-in with Klenow polymerase and thus converted into an *NheI* site upon recircularization.

For the resulting pRTCF constructs, three to five independent transient expression experiments were done in *Nicotiana tabacum* SR1 protoplasts as described by Tacke et al. (1990), with a CaMV 35S-driven 17K-GUS construct as the positive control. GUS activity was determined in protein extracts prepared 16 h post-transfection and using 4-methylumbelliferyl glucuronide (4-MUG) as the substrate (Jefferson et al., 1987). Neither pRTCF9 (Fig. 1B) nor the other two constructs lacking the SL structure (pRTCF7, pRTCF10) displayed significant GUS activity under the assay conditions (1.2% and 0.4%, respectively; data not shown). In contrast, the pRTCF constructs containing the SL structure (except for pRTCF27) showed GUS activity with pRTCF4 (30.6% ± 7.8 of 17K-GUS) and pRTCF5 (14.1% ± 6.5 of 17K-GUS), being much more active than the previously reported pRTCFXhol/*syl* construct (1.9% ± 0.7 in comparison with 17K-GUS; Rohde et al., 1994). Deletion of the RPT sequences (pRTCF4 versus pRTCF5) resulted in a 2-fold decrease of promoter efficiency. Finally, significant promoter activity was not detected with pRTCF27. These results limit the region for *cis* signals important for efficient transient expression to between nt 611–991, resulting in an active CFDV promoter of some 380 nt.

The CFDV fragments CF2, CF4, CF5 and CF7 in fusion with the GUS gene and the CaMV 35S terminator were cloned into the binary vector pBIN19 (Bevan, 1984), introduced into *Agrobacterium tumefaciens* strain LBA 4404 by electroporation and used for transformation of *N. tabacum* SR1. For each transformation event, regenerated plants from several independent lines (ten for CF2 and CF4, five for CF5 and CF7) were tested for GUS activity. For this, transverse thin-sections were stained with 5-bromo-4-chloro-3-indolyl β-D-glucuronide (X-gluc) at 37 °C and observed by light microscopy (Fig. 2). All constructs tested, including pBINCF7 which was completely inactive in protoplasts, displayed phloem-specific activity as shown for construct CF5 in Fig. 2(A, C). The strength of expression, however, differed in a manner analogous to that in the transient expression experiments (Fig. 1B), with CF2-, CF4- and CF5-transgenic tissue completely stained after 2 h, while CF7-transgenic material needed overnight incubation for colour development. For all transgenic plants, expression in the phloem tissue was apparently stronger in the adaxial (adp) than in the abaxial phloem (adp: Fig. 2A; data not shown). No expression was detected in the xylem (Fig. 2C) as compared to the 35S promoter control (Fig. 2D). GUS expression was also tested at the callus stage for all of the transgenic lines with results similar to the transient expression experiments in protoplasts (high GUS activity for CF2, CF4 and CF5, poor staining for CF7; data not shown). Thus, the CFDV promoter is active in differentiated (plant) and undifferentiated cells (callus, protoplasts).

Finally, the expression level of the pRTCF constructs was examined in transformed *E. coli* JM109 cells. For each construct, three or six single colonies were grown overnight at 37 °C in 3 ml of LB medium. The OD<sub>600</sub> of the bacterial cultures was then adjusted to 1 and 10 µl of each was incubated for 1 h at 37 °C in the presence of 3 mM 4-MUG in GUS extraction buffer (50 mM Na<sub>H</sub>PO<sub>4</sub>–Na<sub>H</sub>PO<sub>4</sub> pH 7, 10 mM EDTA, 0.1% Triton X-100). In all experiments, high GUS activity of the CFDV constructs was observed in comparison to the CaMV 35S 17K-GUS control (Fig. 1C). pRTCF4 and pRTCF9 were the most efficient constructs with an activity as high as 257,141 units/µl and 317,733 units/µl, respectively. These results also further highlighted the importance of the SL structure for efficient expression: the pRTCF5 construct reached 19.6% and the CaMV 35S 17K-GUS only 2.4% of pRTCF4 activity.
From the results obtained, the cis-acting signals for the phloem specificity of the CFDV promoter are located on a fragment of approximately 250 nt (position 711–962; Fig. 1A) which is devoid of the double repeat sequence RPT and the SL structure. The only prominent, previously described signal is a stretch of 52 nt (Rohde et al., 1994) which is present in all constructs except for CF27. A sequence comparison of CFDV in this region with other phloem-specific promoters identified a highly conserved motif of 13 nt to the centre of the 52 nt stretch (Fig. 3). For rice tungro bacilliform virus (RTBV), this consensus sequence is apparently not essential for phloem specificity, since the RTBV core promoter lacks half of this box (Yin et al., 1997). However, it is interesting to note that – except for CoYMV – this motif is localized upstream of and in proximity to the TATA box (169 nt for CFDV, 129 nt for RTBV, 123 nt for rolC and 255 nt for GS3A; Fig. 3). Further potential cis-elements of the CFDV promoter may be involved in binding factors necessary for phloem-specific promoter activity. One such candidate signal contributing to phloem specificity may be the repetitive CCA motif immediately downstream of the 52 nt stretch. Indeed, the last CCA is near a TGG and Y. Yin and co-workers showed that CCA(N)_6TGG is a recognition site for RF2a transcriptional activator to the RTBV promoter (Yin & Beachy, 1995; Yin et al., 1997). Finally, the TGCTAAGT repeat localized directly upstream of the TATA box is unique to CFDV (Fig. 3). Thus, with CFDV the promoter activity in specialized, differentiated tissue (phloem) as well as in undifferentiated or dedifferentiated cells (callus, protoplasts) supports the assumption that more than one transcriptional activator protein might interact with CFDV-specific motifs.

Other strong viral and phloem-specific promoters have been described. One example is the CoYMV promoter which in transient expression experiments reached 30% of the activity of a double CaMV 35S promoter (Medberry et al., 1992). The RTBV promoter also directs phloem-limited GUS activity (Bhattacharyya-Pakrasi et al., 1993; Yin & Beachy, 1995; Yin et al., 1997). For CFDV, the activity of pRTCF4 in tobacco cells represented 30.8% of the CaMV 35S 17K-GUS activity and, therefore, 33.9% activity of the 35S promoter, since 17K-GUS
or stable transformation will not only save time, but provides in bacteria prior to their use in transient expression experiments in gene technology. Testing the expression ability of constructs organisms at the level of transcription is of particular interest phloem, but can be detected in leaves, stems and flowers. to CFDV, however, its activity in plants is not limited to the BEJI

bacteria (Mitra also been demonstrated to be a strong promoter in plants and Chlorella & Signer, 1990; Fig. 1C), pRTCF4 as the most active CFDV compared to CaMV 35S promoter activity in bacteria (Assaad et al...1 (1991). The 52 bp region (Fig. 1A) of CFDV is underlined. Homologies between all promoters are shaded (grey box). The dotted boxes highlight the repeated sequences CCA or TGCTAAGT. The TATA boxes are shown as black boxes.

Fig. 3. Sequence comparison of the CFDV promoter region determining phloem specificity with promoter sequences of other phloem-specific promoters. Sequence comparison of CFDV CF5 to the promoter regions of the rice tungro bacilliform virus (RTBV) promoter (Yin et al., 1997), Commelina yellow mottle virus (Medberry et al., 1993), the rolC gene of Agrobacterium rhizogenes (Kiyokawa et al., 1994) and the pea glutamine synthase GS3A gene in organs of transgenic tobacco and alfalfa. Plant Journal 4, 71–79.

References


is 1·1 times more efficient than a simple 35S promoter (Tacke et al., 1990). A further property of the CFDV promoter is noteworthy, namely its high activity in prokaryotic cells. As compared to CaMV 35S promoter activity in bacteria (Assaad & Signer, 1990; Fig. 1C), pRTCF4 as the most active CFDV promoter construct is more than 40 times more efficient. The Chlorella virus adenine methyltransferase gene promoter has also been demonstrated to be a strong promoter in plants and bacteria (Mitra et al., 1994; Mitra & Higgins, 1994). In contrast to CFDV, however, its activity in plants is not limited to the phloem, but can be detected in leaves, stems and flowers.

Regulation of gene expression in different kinds of organisms at the level of transcription is of particular interest in gene technology. Testing the expression ability of constructs in bacteria prior to their use in transient expression experiments or stable transformation will not only save time, but provides an opportunity to efficiently test every stage of cloning or DNA amplification and, thereby, prevent any deletion or knock-out mutation in the sequence of interest. However, few shuttle promoters have been described up to now. In this respect, the CFDV CF4 construct has definitely interesting and original properties and may be of particular interest for application in gene technology.

The technical help of Ms A. Kaufmann is gratefully acknowledged. A.H. was the recipient of an EC TMR fellowship.


Received 28 November 1997; Accepted 16 February 1998