PrP genotypes and experimental scrapie in orally inoculated Suffolk sheep in the United States

K. I. O’Rourke,1 G. R. Holyoak,2 W. W. Clark,3† J. R. Mickelson,4 S. Wang,2 R. P. Melco4 T. E. Besser5 and W. C. Foote2

1United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, 337 Bustad Hall, Washington State University, Pullman, WA 99164-7030, USA
2Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan, UT 84322-4815, USA
3United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Scrapie Field Trial, Mission, TX 78572, USA
4Department of Veterinary Pathobiology, University of Minnesota, St Paul, MN 55117, USA
5Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA

One-hundred and three United States Suffolk sheep were inoculated orally with a scrapie agent preparation and monitored for clinical disease and histopathological lesions characteristic of scrapie. A retrospective study of the polymorphisms at codon 171 of the prion protein (PrP) gene was performed on these sheep. All 63 sheep that developed scrapie during the observation period were homozygous for the glutamine 171 (171-QQ) PrP allele. Twelve 171-QQ sheep failed to develop disease. All 5 sheep homozygous for arginine (171-RR) and all 23 heterozygous (171-QR) sheep remained free of scrapie.

Introduction

Scrapie is a naturally occurring neurodegenerative disease of sheep. The disease is experimentally transmissible to cattle, goats and laboratory animals via oral, parenteral and intracerebral routes using homogenates of brain or lymphoid tissues from infected animals (Pattison & Millson, 1961; Zlotnik & Rennie, 1963; Zlotnik & Rennie, 1963; Pattison, 1965; Kimberlin et al., 1975; Clark et al., 1995). The mode of transmission from ewe to lamb or between adults under field conditions is not known. However, oral exposure to foetal membranes or to pastures grazed by infected animals has been implicated as a possible route of vertical and horizontal transmission (Brotherston et al., 1968; Pattison et al., 1972; Dickinson et al., 1974; Hadlow et al., 1982; Onodera et al., 1993).

The causative agent of scrapie does not appear to be a conventional micro-organism. Infectivity in tissues from experimentally infected animals is associated with a relatively protease-resistant isoform (PrP-Sc) (Bolton et al., 1982; Prusiner, 1982; McKinley et al., 1983; Diringer et al., 1983; Merz et al., 1984) of the cellular prion protein (PrP-C) (Oesch et al., 1985; Basler et al., 1986). The ‘protein only’ model for prion diseases proposes that disease is transmitted solely by PrP-Sc, which acts as a template for conversion of PrP-C to PrP-Sc by a nucleation or polymerization event (Gajdusek, 1993; Come & Lansbury, 1993).

Susceptibility to ovine scrapie is controlled by a combination of host genetics (Parry, 1979; Hunter et al., 1989, 1991, 1992; Laplanche et al., 1993; Westaway et al., 1994; Belt et al., 1995; Clouscard et al., 1995) and the scrapie strain used to infect the host (Dickinson & Meikle, 1971; Goldmann et al., 1990). The ovine PrP gene contains polymorphisms encoding amino acid changes at codons 112 (methionine or threonine), 136 (alanine or valine), 141 (leucine or phenylalanine), 154 (arginine or histidine) and 171 (arginine, glutamine or histidine) (Goldmann et al., 1990; Laplanche et al., 1993; Belt et al., 1995; Hunter et al., 1996). Polymorphisms at residues 136 and 171 are associated with susceptibility to both experimental and...
natural scrapie (Hunter et al., 1994; Westaway et al. 1994; Clouscard et al., 1995; Ikeda et al., 1995).

Two ovine scrapie strains have been defined by their action in Cheviot sheep of defined PrP genotypes (Goldmann et al., 1994b). Subcutaneous challenge with the isolate SSBP/1, the prototype for strain A, produces disease in Cheviot sheep that are homozygous or heterozygous for valine at codon 136 (Goldmann et al., 1994a; Maciulus et al., 1992); sheep homozygous for alanine at codon 136 survive subcutaneous challenge. Polymorphisms at codons 154 and 171 modulate the survival times in 136-AV sheep with natural scrapie (Hunter et al., 1996). Valine 136 is the predominant allele in naturally infected sheep of several breeds, including Swaledale, Romanov, Ile de France, Shetland, Scottish Halfbred and Bleu du Maine (Hunter et al., 1992; Laplanche et al., 1993; Hunter et al., 1993, 1994). Valine 136 is a rare allele in Suffolk sheep (Westaway et al., 1994) but has been reported at low frequency in Japan and the United States (Ikeda et al., 1995; O’Rourke et al., 1996).

Experimental challenge with isolate CH1641, the prototype strain C, results in disease in sheep homozygous for glutamine (171-QQ) (Goldmann et al., 1994a). Heterozygous (171-QR) or homozygous arginine (171-RR) sheep survive challenge by the intracerebral route. 171-QQ is the predominant genotype of naturally infected sheep of several breeds, notably Suffolk sheep in the United States and Japan (Westaway et al., 1994; Ikeda et al., 1995; O’Rourke et al., 1996). In this study, we examined the association of codon 171 genotype with susceptibility of Suffolk sheep to scrapie following oral exposure. We report that scrapie occurred only in sheep of the PrP genotype 171-QQ; all 24 171-QR sheep and all 5 171-RR sheep in the study remained scrapie free.

Methods

Animal inoculation. Animals and inoculation protocols were described earlier (Foote et al., 1993). Briefly, in 1980, Suffolk sheep were inoculated by the oral route with 30 ml of 10% (w/v) suspensions of pooled brain and spleen from Suffolk sheep infected with third- and fourth-passage Suffolk scrapie agent. Sheep were housed in two groups and observed for clinical disease. Histology was performed on all animals after death. Diagnosis was made on the basis of clinical signs and confirmed by histopathological examination of brain tissue by or under contract with the National Veterinary Services Laboratory, Ames, Iowa, USA.

Genetic analysis. DNA was extracted from blood or tissues by phenol-chloroform extraction (Maciulus et al., 1992). Codon 171 genotyping of Suffolk sheep samples was performed by oligonucleotide hybridization to a PrP PCR product using probes specific for alleles encoding glutamine, arginine and histidine (O’Rourke et al., 1996). Codon 136 determination was performed by BspHI digestion of PCR amplified products (Hunter et al., 1993; Maciulus et al., 1992).

Statistical analysis. Disease susceptibility of Suffolk sheep with the PrP 171 allele QQ was compared to susceptibility of sheep with PrP 171 alleles QR or RR by survival analysis using a lifetable procedure (SAS Institute, Inc., 1985), due to right censored data (i.e. sheep dying of nonscrapie causes during the range of observed scrapie incubation periods).

Results

PrP genotypes represented in this study

The oral inoculation trial was initiated before our current understanding of PrP genotypes. Thus, the distribution of genotypes in the study group represents the frequencies of those genotypes in the flocks from which the sheep were purchased in 1979. Genotype frequencies at codon 171 were 0.72 (QQ), 0.23 (QR) and 0.05 (RR), which are not significantly different (P < 0.05) from that of a large sample of United States Suffolk sheep reported earlier (O’Rourke et al., 1996). Alleles encoding 136-V and 171-H were not found in this group.

PrP genotypes and scrapie in Suffolk sheep

The oral inoculation trial was initiated with 141 Suffolk sheep (Foote et al., 1993). The earliest diagnosis of scrapie occurred in a sheep that survived for 349 days after inoculation. Therefore, only the 103 sheep surviving longer than 349 days are included in this study (Table 1).

Sixty-three of the 103 orally inoculated Suffolk sheep developed histopathological signs of scrapie. All 63 of the histopathologically positive sheep were of the genotype 136-AA, 171-QQ. Survival times in scrapie-affected sheep ranged from 349 days to 1346 days; mean survival time was 622 days ± 240 days. Fifty-four of the 63 sheep with histopathological signs of scrapie had clinical signs of ataxia, weight loss or wool loss for times ranging from 3 to 135 days (mean = 50 days, SD = 35) before euthanasia or death. Two sheep exhibited clinical signs for longer times (213 and 539 days). The last histopathologically positive sheep survived to 1346 days after inoculation.

Table 1. PrP genotypes and disease outcome in Suffolk sheep inoculated orally with Suffolk-passaged scrapie agent

<table>
<thead>
<tr>
<th>PrP genotype</th>
<th>With scrapie*</th>
<th>Without scrapie†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codon 136</td>
<td>Codon 171</td>
<td>No. of sheep</td>
</tr>
<tr>
<td>AA QQ</td>
<td>63</td>
<td>622 (240)</td>
</tr>
<tr>
<td>AA QR</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>AA RR</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>Totals …</td>
<td>63</td>
<td>40</td>
</tr>
</tbody>
</table>

* Histopathological signs of scrapie were present.
† Histopathological signs of scrapie were not present.
NA. Not applicable.
Twelve sheep homozygous for glutamine (171-QQ), 23 sheep heterozygous for glutamine/arginine (171-QR) and 5 sheep homozygous for arginine (171-RR) failed to develop clinical or histological lesions of scrapie. Of these sheep, 20 171-QR and 4 171-RR sheep were observed for more than 1346 days, the longest incubation time of scrapie-positive sheep. Five of the sheep with the genotype 171-QQ were observed for more than 5000 days.

Disease susceptibility of sheep with the 171-QQ genotype was compared with that of sheep with the 171-QR or 171-RR genotypes. The survival distribution function of the 171-QQ allele was significantly different from that of the 171-QR or RR group with a probability of > 99% (P < 0.0001) (Fig. 1).

Discussion

The Suffolk sheep in this study were inoculated orally with a Suffolk-passaged scrapie homogenate. Our results demonstrate a very strong association of disease with the 171-QQ genotype using this scrapie isolate. This finding is consistent with a smaller study of British Cheviot sheep challenged subcutaneously or intracerebrally with the prototype strain C scrapie agent (Goldmann et al., 1994a). The incubation times of scrapie-affected sheep in our study varied widely and 12 of 75 171-QQ sheep remained scrapie free. There are several possible explanations for the varying response to inoculation in these sheep. Additional polymorphisms within the PrP open reading frame or in the flanking regions may modulate incubation time or reduce susceptibility (Hunter et al., 1996). Alternatively, uptake of the agent following oral inoculation of weaned lambs may vary among individuals, depending on rumen contents and maturity.

This study and earlier observations (Westaway et al., 1994; Belt et al., 1995; Clouscard et al., 1995; Ikeda et al., 1995; O’Rourke et al., 1996) support the use of PrP genotyping in selection of Suffolk sheep with genotypes associated with lower susceptibility to clinical scrapie (171-RR and 171-QR) (Hosie & Dawson, 1996). However, no data have yet been reported regarding the possible accumulation of PrP-Sc or infectivity in extraneural tissues of inoculated or naturally exposed sheep with the 171-QR or 171-RR genotypes. Thus, although it appears likely that 136-AA, 171-QR (or 171-RR) genotypes are associated with resistance to clinical scrapie, it is premature to conclude that these Suffolk sheep represent no risk to offspring or susceptible flockmates until information on the presence or absence of a carrier state is available.

Dr William Taylor provided additional histopathology services. A. Maciulus and C. Evans contributed assistance in the laboratory and live animal work respectively at Utah State University. L. Mickelsen provided technical assistance at USDA, ARS, ADRU, Pullman, Wash., USA. We thank D. P. Knowles for critical review of the manuscript.

References


occurs only in specific PrP genotypes.

657–664.

Journal of Infectious Diseases

Suffolk sheep with scrapie virus.

merization of host precursors to infectious amyloids in the transmissible

sheep: breeds, ages and PrP gene polymorphisms.

Veterinary Record

the gene for the scrapie-associated fibril protein (PrP) to the Sip gene in

Cheviot sheep.

In the association

Restriction

scrapie to goats and sheep by the oral route.

Further observations on the


Laplanché, J. L., Chatelain, J., Westaway, D., Thomas, S., Dussaucy, M.,


associated with natural scrapie discovered by denaturing gradient gel


resistant protein is a structural component of the scrapie prion. Cell 35, 57–62.

Maciulis, A., Hunter, N., Wang, S., Goldmann, W., Hope, J. & Foote,


gene and their association with susceptibility to experimentally induced

scrapie in Cheviot sheep in the United States. American Journal of


Merz, P. A., Rohwer, R. G., Kascak, R. J., Wisniewski, H. M.,


Oesch, B., Westaway, D., Walchi, M., McKinley, M. P., Kent, S. B. H.,

Aebersold, R., Barry, R. A., Tempest, P., Teplow, D. B., Hood, L. E. and


Isolation of scrapie agent from the placenta of sheep with natural scrapie

in Japan. Microbiology and Immunology 37, 311–316.


frequencies of an ovine scrapie susceptibility gene. Animal Biotechnology

7, 155–162.


Pattison, I. H. (1965). Scrapie in the Welsh mountain breed of sheep and

its experimental transmission to goats. Veterinary Record 77, 1386–1390.

Pattison, I. H. & Millson, G. C. (1961). Experimental transmission of

scrapie to goats and sheep by the oral route. Journal of Comparative

Pathology 71, 171–176.


Spread of scrapie to sheep and goats by oral dosing with foetal

membranes from scrapie-affected sheep. Veterinary Record 90, 465–468.


Westaway, D., Zuliani, V., Cooper, C. M., Da Costa, M., Neuman, S.,


prion protein alleles encoding glutamine-171 renders sheep susceptible to


experimental transmission of scrapie from sheep and goats to laboratory

mice. Journal of Comparative Pathology 73, 150–162.

Received 3 September 1996; Accepted 19 December 1996


lateral transmission of scrapie in sheep. Journal of Comparative Pathology

84, 19–25.

Diringer, H., Gelderblom, H., Hilbert, H., Ozel, M., Edelbluth, C. &


Foote, W. C., Clark, W., Maciulis, A., Call, J. W., Hourrigan, J., Evans,


transmission in sheep, using embryo transfer. American Journal of

Veterinary Research 54, 1863–1868.

Gajdusek, D. C. (1993). Genetic control of nucleation and poly-

merization of host precursors to infectious amyloids in the transmissible

amyloidoses of brain. British Medical Bulletin 49, 913–931.

Goldmann, W., Hunter, N., Foster, J. D., Salbaum, J. M., Beyreuther, K.

& Hope, J. (1990). Two alleles of a neural protein gene linked to scrapie


scrapie-associated fibril proteins (PrP) are encoded by lines of

sheep selected for different alleles of the Sip gene. Journal of General

Virology 72, 2411–2417.


genotype and agent effects in scrapie; change in allelic interaction with

different isolates of agent in sheep, a natural host of scrapie. Journal of General

Virology 75, 989–995.


genotypes and the Sip gene in Cheviot sheep form the basis for scrapie


296–299.

Hadlow, W. J., Kennedy, R. C. & Race, R. E. (1982). Natural infection of

Suffolk sheep with scrapie virus. Journal of Infectious Diseases 146.

657–664.


the gene for the scrapie-associated fibril protein (PrP) to the Sip gene

in Cheviot sheep. Veterinary Record 124, 364–366.


fragment length polymorphisms of the scrapie-associated fibril protein

(PrP) gene and their association with susceptibility to natural scrapie


sheep: breeds, ages and PrP gene polymorphisms. Veterinary Record

130, 389–392.


Swaledale sheep affected by natural scrapie differ significantly in PrP

genotype frequencies from healthy sheep and those selected for reduced


Hunter, N., Goldmann, W., Smith, G. & Hope, J. (1994). The association of

a codon 136 PrP gene variant with the occurrence of natural scrapie.

Archives of Virology 137, 171–177.

Hunter, N., Foster, J. D., Goldmann, W., Stear, M. J., Hope, J. &


occurs only in specific PrP genotypes. Archives of Virology 141.

809–824.

Ikeda, T., Horiuchi, M., Ishiguro, N., Muramatsu, Y., Kai-Uwe, G. D. &

to onset of scrapie in Suffolk and Corriedale sheep in Japan. Journal of

General Virology 76, 2577–2581.


Laplanché, J. L., Chatelain, J., Westaway, D., Thomas, S., Dussaucy, M.,


associated with natural scrapie discovered by denaturing gradient gel