The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo

L. Willems,1 P. Kerkhofs,2 L. Attenelle,1 A. Burny,1 D. Portetelle1 and R. Kettmann1

1 Molecular Biology Unit, Faculty of Agronomy, B5030 Gembloux, Belgium
2 Virology Unit, National Institute for Veterinary Research, B1120 Uccle, Belgium

In order to gain insight into the role of the major homology region (MHR) in the infectious potential of bovine leukaemia virus (BLV), mutations were introduced into the capsid gene of an infectious molecular clone. A provirus that was designed to contain only a slightly modified version of the MHR (substitution of phenylalanine 147 with a tyrosine) was still infectious in vivo. Furthermore, the provirus loads were not significantly different from those obtained with a wild-type virus. A second mutant was designed to analyse a mild modification of the MHR at the level of arginine 150. The substitution of this residue with a lysine completely destroyed the infectious potential of the recombinant virus. Finally, a third mutant that was deleted in the MHR region was unable to infect the host. Thus it appears that the integrity of the MHR domain is essential for BLV infectivity in vivo.

The retrovirus gag genes encode three main structural proteins: matrix (MA), capsid (CA) and nucleocapsid (NC) (Leis et al., 1988). These proteins appear to exert similar functions in the replicative cycle of all retroviruses. However, there is little amino acid conservation among different retroviruses except for a stretch of 20 amino acids within the capsid gene that has been called the major homology region (MHR) (Wills & Craven, 1991). Despite this high conservation during evolution, mutations in the MHR region have remarkably different effects. Indeed, most deletions or insertion mutations in the CA domain of murine leukaemia virus blocked the assembly of the mutant proteins into virions (Hansen et al., 1990). By contrast, most of the CA domain (including the MHR) of Rous sarcoma virus (RSV) was found to be dispensable for particle assembly and release (Craven et al., 1995). Deletions in the MHR domain of human immunodeficiency virus (HIV) blocked replication in cell culture and reduced the ability to form virus particles (Dorfman et al., 1994). Within the MHR domain, three residues, Gln-138, Glu-142 and Arg-150, are always conserved among different retroviruses (Wills & Craven, 1991). A fourth residue (either Tyr or Phe) at position 147 appears to be invariably aromatic. These sequences also overlap a T cell epitope that is recognized in bovine leukaemia virus (BLV)-infected animals (Majer et al., 1994). In fact, purified p24 capsid protein stimulates the incorporation of $[^3]H$methyl-thymidine into CD4+ and CD8+ enriched T cell populations. By peptide scanning of the p24 sequence, two major epitopes were identified within the p24 protein at positions 31 to 55 (PGSQVWIQTLRLAILQADPTPADLE) and 141 to 165 (AESYVEFVNRLQISLADNLPGVPK). This last epitope thus coincides with the MHR located between amino acids Ile-136 and Leu-155.

In order to evaluate the importance of this region for the infectious potential of BLV, recombinant proviruses were constructed and their behaviour was analysed in vivo (Willems et al., 1994). The provirus 344, which was cloned into the plasmid pBLV Hind, was previously shown to be infectious in vivo and to induce tumours in sheep. We therefore used this provirus to evaluate the importance of the MHR region. We first determined the nucleotide sequence of its p24 gene. It appeared that the p24 gag nucleotide sequence of the 344 provirus was highly related to that of the T15 variant (Rice et al., 1987). Only 10 point substitutions differed between the two (data not shown). In terms of protein sequence, a single amino acid was changed: the Val at position 209 was replaced by an Ile.

In order to gain insight into the role of the MHR region on the infectious potential of BLV, three mutants were considered. A first construct called pBLV gag147 was designed to contain only a slightly modified version of MHR. The residue at position 147 appears to be invariably aromatic, being either a Phe in the BLV–human T-lymphotrophic virus (HTLV) subfamily or a Tyr in the HIV–simian immunodeficiency virus (SIV) group. In mutant pBLV gag147, the Phe at position 147 was replaced by a Tyr generating a highly related MHR domain.

Author for correspondence: L. Willems.
Fax +32 81 613888.
A second mutant was designed to analyse a mild modification of the MHR. Indeed, among the four highly conserved residues Gln-138, Glu-142, Phe-147 and Arg-150, are always conserved among the different retroviruses (Fig. 1). In mutant pBLVgag150, the Arg-150 was replaced by a Lys. This substitution maintains the basic hydrophilic character of the amino acid but modifies the length of the side chain. Finally, a third mutant was designed to evaluate the importance of the entire MHR region in the infectious potential of BLV. The integity of the recombinant proviruses was checked by restriction analysis and sequencing. Furthermore, the expression of the Tax and p24env proteins was measured in transient transfection assays. No significant difference was observed between the wild-type and mutated viruses (data not shown).

The behaviour of the different proviruses was directly analysed in vivo. As a positive control, two sheep (animals 297 and 298) were injected intradermally with the wild-type provirus construct (cloned in pBLVIX; Willems et al., 1995). These animals were maintained under controlled conditions at the National Institute for Veterinary Research (Uccle, Belgium). Seroconversion, as revealed by the presence of antibodies directed towards the envelope gp51 protein, occurred 21 and 33 days post-injection, respectively. As a control, the animals were kept together with an uninfected sheep (animals 288). Under these conditions, we did not observe natural transmission of the virus (reviewed by Kettmann et al., 1994). When the pBLVgag147 recombinant was injected into sheep 213 and 299, the animals quickly seroconverted after 28 and 25 days respectively. These seroconversion times did not significantly differ from those of the wild-type virus. In contrast, the pBLVgag150 and pBLVdMHR recombinants were unable to infect their host. It thus appears that the deletion of the MHR domain destroyed the infectious potential of the virus. Even a mild mutation at the level of Arg-150 was deleterious to the virus.

From these data, we can conclude that the MHR domain is essential to the infectious potential of BLV in vivo. Since even a mild mutation at the level of Arg-150 kills the virus, one could have expected that the substitution of Phe-147 for Tyr also interferes with virus replication in vivo. Therefore, the provirus loads were measured 6 months after infection by a semi-quantitative PCR amplification. Peripheral blood circulating leukocytes from the different sheep were lysed and their DNA was amplified by 22 cycles of PCR using primers specific for the \textit{tax} gene. The amplified fragments were then separated on an agarose gel and analysed by Southern blot hybridization using a virus probe. Under these conditions, a 1 kb fragment was amplified in samples from sheep infected with the wild-type virus (animals 298 and 299, Fig. 2). As a control for quantification, 10-fold serial dilutions of the pBLVIX plasmid DNA were amplified in parallel (Fig. 2). As a negative control for PCR contamination, no fragments were observed when the amplification was performed with PBMCs from the uninfected

Three recombinant proviruses were constructed with the modified \textit{gag} genes from plasmids pSGgag147, pSGgag150 and pSGgagdMHR. Therefore, the \textit{Nco} (at position 577) to \textit{Col} (at position 1464) inserts from these vectors were exchanged with the corresponding fragment of the pBLVHind plasmid yielding pBLVgag147, pBLVgag150 and pBLVdMHR constructs. All the constructs were completely sequenced in order to check for the presence of the desired mutation and for the lack of modification due to Taq DNA polymerase mistakes.
These experiments were performed at least in triplicate. In plasmid pBLVIX were amplified in parallel under the same conditions. analysed by Southern blot hybridization using a BLV probe (5 oligonucleotides, A (position 6989 following the numerotation of Rice et al., 1987; 5' CTCTCGGAGATCCATTACCTGA 3') and B (position 8000; 5' CCTGCAATGATCTTTCATACAAAT 3'). After PCR, the samples were analysed by Southern blot hybridization using a BLV probe (SacI insert from plasmid pBLV344). Serial dilutions of the wild-type provirus cloned in plasmid pBLVIX were amplified in parallel under the same conditions. These experiments were performed at least in triplicate.

Fig. 2. Analysis of provirus loads in vivo. Blood samples from the sheep were cleared and washed three times in lysis buffer. The pellets were then resuspended in PCR buffer, digested with protease K and boiled. Ten µl aliquots (out of 500) were amplified by 22 cycles of PCR with two oligonucleotides, A (position 6989 following the numerotation of Rice et al., 1987; 5' CTCTCGGAGATCCATTACCTGA 3') and B (position 8000; 5' CCTGCAATGATCTTTCATACAAAT 3'). After PCR, the samples were analysed by Southern blot hybridization using a BLV probe (SacI insert from plasmid pBLV344). Serial dilutions of the wild-type provirus cloned in plasmid pBLVIX were amplified in parallel under the same conditions. These experiments were performed at least in triplicate.

Sheep no. pBLVIX pBLVgag147 pBLVgag150 pBLVgagdMHR 298 297 299 211 175 233 228 None 1x 10x 100x 1000x 10000x

In conclusion, we used a series of three mutants that were mutated in the MHR domain to varying degrees. A first provirus was designed to contain only a slight modified version of the MHR. In this mutant, the substitution with a tyrosine did not destroy the infectious potential of the virus. This observation should be compared with data from other systems. The substitution of Phe-147 in the HIV-1 MHR had a moderate effect in cell culture (Mammano et al., 1994). In RSV, the replacement of the arginine by a glutamine decreased virus infectivity, whereas substitution by a leucine completely killed the virus (Craven et al., 1995). Altogether, these data indicate that the mutation at the level of Arg-150 had remarkably different effects depending on the virus. Despite its high evolutionary conservation, this residue has some functional plasticity that still allows virus infectivity.

Finally, a third mutant was designed to evaluate the importance of the entire MHR region in virus infectivity. This drastic deletion did not allow the recombinant virus to infect sheep. This result was expected since the mutation of Arg-150 only also destroyed infectivity. However, one should recall here that most of the capsid domain of RSV, including the MHR, was found to be dispensable for particle assembly and release (Wills & Craven, 1991). Since mutations at the level of the arginine affected infectivity it thus appears that the infectious potential requires additional steps that cannot always be analysed in cell culture.

In summary, our data highlight the biological relevance of the MHR region of BLV in vivo and demonstrate that the integrity of the MHR domain is essential for its infectious potential.

R.K. and L.W. are respectively Directeur de Recherches and Maître de Recherches of the Fonds national de la Recherche scientifique (FNRS). We thank the Bekales Foundation, the Association belge contre le Cancer, the Caisse générale d’Epargne et de Retraite, the FNRS and the Service de Programmation pour la Politique scientifique (STC PAI) for financial support. We are grateful to R. Martin, P. Ridremont and G. Vandendaele for excellent technical help.
References

Received 25 June 1996; Accepted 10 September 1996