Heterogeneity of hepatitis C virus genotype 2 variants in West Central Africa (Guinea Conakry)

A. Ruggieri,1 C. Argentini,1 F. Kouruma,2 P. Chionne,1 E. D’Ugo,1 E. Spada,1 S. Dettori,1 S. Sabbatani3 and M. Rapicetta1

1 Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena no. 299, 00161 Rome, Italy
2 Prog. Nat. MST-SIDA Guinea Conakry, Africa
3 Department of Infectious Diseases, Hospital C.A. Pizzardi, Bologna, Italy

An overall anti-hepatitis C virus (HCV) prevalence of 6.7% was found in a sero-epidemiological study carried out in the town of Conakry (Guinea Conakry, West Central Africa) on 1421 subjects who were either blood donors, pregnant women or in- and outpatients receiving treatment for conditions other than liver disease. Seven HCV isolates from a subsample of 73 sterile sera from this population were studied for genetic characterization and classification. The 5’NCR was analysed by the Line Probe Assay. This method assigned the isolates to genotype 2. Analysis of the 5’NCR sequences alone was unable to give a more accurate classification. Comparison of NSSb region sequences (nucleotides 7575-8196), from Guinea isolates and genotype 2 database sequences, showed evolutionary distances in the range 0.15-0.26. There was a high level of subtype heterogeneity among the genotype 2 Guinea HCV isolates. Four of the subtypes were possibly new.

Hepatitis C virus (HCV) (Choo et al., 1991), a distant relative of pestiviruses and flaviviruses, is the major aetiological agent of non-A, non-B hepatitis. Differences have been found among HCV strains in geographical distribution (McOmish et al., 1994), antigenicity (McOmish et al., 1993), level of viraemia and severity of disease (Tanaka, 1994). Extensive phylogenetic studies of genome coding regions, such as E1 and NSSb, have provided evidence for the existence of at least 11 major genetic groups of HCV (Bukh et al., 1993; Tokita et al., 1996). Some of these are widely distributed around the world (genotypes 1, 2, 3) while others have been found in particular geographical regions. Genotypes 4 and 5 are regarded as African genotypes (Xu et al., 1994; Davidson et al., 1995) while genotypes 6 to 11 seem to be mostly present in Eastern and Asian countries (Tokita et al., 1996).

This study was carried out in an urban area of the West Central African region of Guinea Conakry with the aim of defining the prevalence of HCV infection in this region, where data are scarce, and to investigate the genetic relatedness and classification of HCV isolates.

The study population consisted of 1421 individuals, aged 16–45, consecutively observed during 1993 at the Coronthe Service Ambulatory and at the Donkâ Hospital in the city of Conakry (Guinea Conakry). 530 individuals were blood donors or pregnant women; 891 individuals were in- or outpatients receiving treatment in the departments of physiology, dermatology, gynaecology or neurology. All sera were tested for the presence of anti-HCV by second generation ELISA (Ortho Diagnostics). Anti-HCV ELISA reactive sera showing two or more bands by RIBA III supplemental assay (Ortho Diagnostics) were considered as positive.

The prevalence of anti-HCV in the different categories is shown in Table 1. A positive trend towards increasing

Table 1. Prevalence of anti-HCV in different categories of subjects in Guinea Conakry

<table>
<thead>
<tr>
<th>Category</th>
<th>Total no.</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood donors</td>
<td>228</td>
<td>10</td>
<td>(4.4)</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>302</td>
<td>8</td>
<td>(2.6)</td>
</tr>
<tr>
<td>In- and outpatients</td>
<td>891</td>
<td>77</td>
<td>(8.6)</td>
</tr>
<tr>
<td>Total</td>
<td>1421</td>
<td>95</td>
<td>(6.7)</td>
</tr>
</tbody>
</table>

0001-3883 © 1996 SGM
prevalence by age was present rising from 4.6% and 7% to 12% among the age groups 16-25, 26-35 and 36-45, respectively.

Anti-HCV positive sera from a subsample of 73 sterile sera, collected for virological studies and stored at -80 °C, were tested for the presence of HCV-RNA by a previously described RT-PCR method performed on the 5'NCR (Rapicetta et al., 1992) and NS5b genome regions (Simmonds et al., 1993). Seven HCV isolates were studied: one was from a blood donor (DO12) and the other six from in- and outpatients (MED007, MED011, MED017, PH33, PH48 and PH52). A preliminary characterization, performed by hybridization of 5'NCR RT-PCR products with the Line Probe Assay (INNO-LIPA HCV) (Stuyver et al., 1993), classified all isolates as genotype 2.

HCV genomic regions corresponding to the 5'NCR, nucleotides -245-70, and to NS5b, nucleotides 7975-8196 (numbering according to Choo et al., 1991), were amplified and cloned in T vectors (InVitrogen). Three clones were analysed for each amplified fragment. Sequencing, on both strands, was performed by the modified dideoxynucleotide method with an ABI 373A automatic sequencer. Sequences were aligned by means of a pairwise comparison, using the Pileup program in the GCG package. The MSF format files were imported into the GDE (version 2.0) sequence analysis package. Phylogenetic studies were done with programs in the Phylip package (version 3.5) (Felsenstein, 1993).

Subtype classification based on the 5'NCR failed with all of the following methods: comparative sequence analysis, restriction analysis of sequence patterns (RsaI, ScrFI, HaeIII, HinfI and Thal restriction enzymes) and secondary structure predictions (MAP and MFOLD GCG programs).

Analysis of nested PCR amplified products from NS5b was performed for five of the seven Guinea isolates. The lack of amplification with two samples (MED011 and PH33) may be ascribed to a low viral RNA content or to virus degradation. Alignments of the NS5b sequences of isolates DO12, MED007, MED017, PH48 and PH52 isolates, and comparison with the sequences of 45 isolates from databank representatives

Fig. 1. Phylogenetic tree based on the NS5b region of HCV genotype 2 sequences (neighbour-joining method) of isolates PH52, MED007, DO12, PH48, MED017 and sequences from the GenBank database. The names are those indicated by the authors in the following publications: Virus Research 38, 137–157, 1996; Journal of General Virology 74, 2391–2399, 1993; Journal of General Virology 75, 211–215, 1995; Proceedings of the National Academy of Sciences, USA 91, 10134–10138, 1994; Journal of Hepatology 21, 122–129, 1994; Journal of General Virology 77, 243–301, 1996; Journal of General Virology 76, 2493–2507, 1995). The analysis was based on the maximum likelihood method (program DNAML) and confirmed by neighbour-joining trees (NEIGHBOR); 1000 bootstrap replicates were performed and a consensus tree was drawn (CONSENSE). Clustering was accepted when the relevant branch was present in more than 95% of the trees.
of genotype 2, showed the presence of single mutations characteristic of Guinea Conakry isolates (data not shown).

Fig. 1 is a phylogenetic tree of our HCV isolates in comparison with databank sequences of isolates belonging to genotype 2. Isolates MED007, PH52, DO12, PH48 and MED017 are clustered in branches separate from subtypes 2a, 2b, 2c, 2d, 2e and 2f and from the isolates (EUGAM28 and EUGAM29) studied by Mellor et al. (1995). Furthermore, as shown in Table 2, the evolutionary distance values clearly differentiated isolates MED017 and MED007 from all the other subtypes (0.19–0.26). Isolates DO12 and PH48 belong to the same subgroup. The lower values of phylogenetic distance observed for PH52–DO12, PH48 in respect of the 2a subtype may be ascribed to the short region analysed. Overall, these results indicate a considerable heterogeneity of HCV genotype 2 isolates from Guinea.

Little is known about distribution in Africa of HCV genotypes which are highly prevalent in Western and Asian countries, such as genotypes 1, 2 and 3. However, Mellor et al. (1995) showed the presence of genotype 2 in Africa. In the present study we found a high prevalence of anti-HCV in the region of Guinea Conakry in Central West Africa. All the isolates characterized were of genotype 2.

Sequence and phylogenetic analysis of the NS5b region revealed that the virus strains circulating in the studied population, homogeneous for geographical location and timeframe, also exhibited homogeneity in genotype distribution, but heterogeneity in subtype clustering. Only two out of five isolates (PH48 and DO12) could be classified as belonging to the same subgroup. The values found both from evaluation of genetic distances and from phylogenetic analysis show that Guinea Conakry isolates can be classified outside the previously described subtypes. We thus propose the possible existence of four new subtypes.

In conclusion, the importance of studying HCV variability in several countries, such as African countries, should be stressed, together with variations in deduced amino acid sequences of viral proteins and the consequent influence on the development of serological assays and future vaccines. This work has further shown that we have to be cautious in interpreting the results of classification of HCV isolates from African populations, as novel variants could be present that could produce, by rapid classification methods, patterns resembling those of known genotypes or subtypes.

We thank Cinzia Bisegna for editorial assistance, and Roberto Micarelli for computer assistance. This work was supported in part, by a grant from the Istituto Superiore di Sanità, Progetto Epatite Virale.

References

Table 2. Average genetic distances among genotype 2 isolates

The average genetic distances, intra- and inter-subtype, were calculated for all the isolates reported in Fig. 1 (DNADIST program). ND, Not determined (because only a single isolate was clustered in the respective subtype).

<table>
<thead>
<tr>
<th></th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>2d</th>
<th>2e</th>
<th>2f</th>
<th>PH12–</th>
<th>PH52</th>
<th>MED017</th>
<th>MED007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-subtype</td>
<td>0.0813</td>
<td>0.0924</td>
<td>0.0966</td>
<td>ND</td>
<td>0.0390</td>
<td>0.0770</td>
<td>0.0450</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>DO12–PH48</td>
<td>0.1762</td>
<td>0.2604</td>
<td>0.2225</td>
<td>0.2148</td>
<td>0.2548</td>
<td>0.2424</td>
<td>0.0450</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PH52</td>
<td>0.1574</td>
<td>0.2439</td>
<td>0.2007</td>
<td>0.2306</td>
<td>0.2694</td>
<td>0.2385</td>
<td>ND</td>
<td>ND</td>
<td>0.1859</td>
<td>0.1835</td>
</tr>
<tr>
<td>MED017</td>
<td>0.2127</td>
<td>0.2242</td>
<td>0.1997</td>
<td>0.2127</td>
<td>0.2465</td>
<td>0.2648</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.2229</td>
</tr>
<tr>
<td>MED007</td>
<td>0.2263</td>
<td>0.2664</td>
<td>0.2419</td>
<td>0.2263</td>
<td>0.2614</td>
<td>0.2614</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Received 16 January 1996; Accepted 22 May 1996