Short communication

Antibody-dependent enhancement and persistence in macrophages of an arbovirus associated with arthritis

May La Linn,1 John G. Aaskov2 and Andreas Suhrbier1*

1 Queensland Institute of Medical Research, Box Royal Brisbane Hospital, Queensland 4029 and 2 WHO Collaborating Centre for Arbovirus Reference and Research, School of Life Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia

Ross River virus (RRV) is the aetiological agent of epidemic polyarthritis (EPA) a predominantly rheumatic disease afflicting up to 5000 Australians annually. We show here for the first time that macrophages can be productively infected by RRV. Subneutralizing titres of anti-RRV IgG (but not IgM) also showed classical antibody-dependent enhancement (ADE) of RRV infection in macrophage and monocyte cell lines. No correlation between development of EPA and the pre-existence of ADE titres was apparent, nor could sera raised against a related arbovirus, Barmah Forest, enhance RRV infection. Tumour necrosis factor-α, implicated in the immunopathogenesis of rheumatoid arthritis, was not secreted by RRV-infected monocytes or macrophages. Macrophage cell lines infected with RRV were, however, capable of producing virus for over 50 days. RRV-induced arthritis may therefore be due to the persistent productive infection of macrophages, perhaps established by a brief period of ADE early in infection.

Ross River virus (RRV) is a mosquito-borne alpha-virus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis (EPA). In Australia, where EPA is a notifiable disease, up to 5000 cases are reported annually. In 1979/1980 an explosive epidemic also swept through several islands of the South Pacific resulting in tens of thousands of cases (Aaskov & Doherty, 1994). The principal symptom of EPA is arthritis/arthralgia, which is often severe and usually lasts for 30 to 40 weeks, with about 25% of EPA patients experiencing symptoms for a year or more (Fraser, 1986). Approximately half of the EPA patients also experience a rash, fever, myalgia and/or lethargy. The current treatment with non-steroidal anti-inflammatory agents can provide relief, but it is often inadequate. EPA is rare in children and overall reports for the ratio of asymptomatic to symptomatic infections (resulting in EPA) range from 50:1 to approximately 2:1 (Aaskov & Doherty, 1994; Fraser, 1986).

The rheumatic synovial exudates from EPA patients are largely devoid of neutrophils and contains a mononuclear cell infiltrate, predominantly composed of monocytes, vacuolated and phagocytic macrophages, T cells and B cells. RRV can be isolated from the peripheral blood and viral antigens can be detected in synovial monocyte/macrophages during the first week after the onset of symptoms (Fraser, 1986). Elevated interferon-γ (IFN-γ) levels were also found in exudates taken during this time (J. R. E. Fraser & A. L. Cunningham, personal communication).

RRV has a large host range and can infect many cell types (Aaskov & Doherty, 1994) including murine muscle cells, and human epidermal and synovial cells (Seay et al., 1981; Fraser, 1986). Using the RRV prototype strain T48, we found that the following human cell types could be productively infected with RRV resulting in overt cytopathic effect (CPE): human primary dermal and synovial fibroblasts, primary endothelial cells, osteogenic sarcoma (ATCC CRL 1547), intestinal smooth muscle (ATCC CRL 1692) and HeLa (ATCC CCL 2). In contrast, B cell blasts, lymphoblastoid cell lines and T cell blasts (Thomson et al., 1995) could not be infected by RRV (data not shown). T48 RRV stock virus was prepared by infecting HeLa cells (m.o.i. = 1) and harvesting supernatants, which contained approximately 10^7 TCID_50/ml, at 60 h. Test cells (≈10^6) were infected at 37 °C, then washed four times and cultured in 24-well plates and after 18, 24 and 48 h (i) supernatants were harvested for virus titration (TCID_50) and (ii) cells were fixed in 100% cold methanol for 2 min for indirect immunofluorescence staining (IFA) using rabbit polyclonal anti-RRV sera and anti-rabbit

* Author for correspondence. Fax +61 7 33620106.
e-mail andreasS@qimr.edu.au

0001-13394 © 1996 SGM
FITC-labelled F(ab')₂ (Selenius). The TCID₅₀ assay was performed using 10-fold serial dilutions of 100 µl supernatant samples in flat-bottomed 96-well plates. Vero cells (2 x 10⁴ in 100 µl) were then added into each well and the plates incubated at 37 °C for 7 days. The plates were stained with 0.05% crystal violet in 10% formaldehyde. Replication of RRV in the wide range of human cell types may correlate with the wide range of symptoms associated with EPA (Fraser, 1986); synovial fibroblasts with arthritis, myocytes with myalgia and epithelial and epidermal cells with the rash often seen in EPA patients. The ability of RRV to infect most adherent cells but not non-adherent cells suggests that the receptor for RRV may be a protein used by cells to adhere to the extracellular matrix, possibly an integrin (White, 1993).

Testing of monocyte and macrophage cells showed for the first time that macrophages but not monocytes could also be infected with RRV. The murine macrophage lines J774A.1 (ATCC TIB 67) and RAW 264.7 (ATCC TIB 71), the human histiocytic lymphoma line U937 (ATCC CRL 1593) but not the mature human monocyte line Mono Mac 6 (Zeigler-Heitbrock et al., 1988) could be productively infected by RRV. The percentages of cells which were IFA positive and the TCID₅₀ in the supernatants at 18 h post-infection (p.i.) are given in Fig. 1. Macrophages isolated from human peripheral blood mononuclear cells (PBMC) by adherence and cultured for 24 h could be infected, whereas PBMC could not be infected (data not shown). Cells were infected and washed as above and were grown in RPMI 1640 medium (Gibco BRL) with 2 mM-L-glutamine, supplemented with 10% endotoxin-free heat-inactivated fetal calf serum (FCS; PA Biologicals, Australia), 2 g/l NaHCO₃, 100 U/ml penicillin and 100 µg/ml streptomycin (Flow).
Table 1. Lack of correlation between development of EPA and pre-existing ADE titres

The paired sera for patients 1 and 2 were taken within 2 weeks of each other. The first serum sample for patient 3 was taken 5 months before the second sample.

<table>
<thead>
<tr>
<th>Serum samples</th>
<th>ELISA results</th>
<th>Maximum fold enhancement at antibody dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RRV IgM</td>
<td>RRV IgG</td>
</tr>
<tr>
<td>EPA patient 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st serum sample</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2nd serum sample</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>No enhancement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA patient 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st serum sample</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2nd serum sample</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>No enhancement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA patient 3*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st serum sample</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2nd serum sample</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Asymptomatic individual 1*</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Asymptomatic individual 2*</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Seronegative control*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QML serum sample 15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QML serum sample 17</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Identified by serological survey of Queensland volunteers.

Murine lines were supplemented with 1×10^{-5} M-2-mercaptoethanol.

The ability of macrophage cell lines to replicate RRV suggested that RRV might infect these cells using antibody and Fc receptor, resulting in the classical antibody-dependent enhancement (ADE) of infection described for other viruses, including related alphaviruses (Porterfield, 1986; Morens & Halstead, 1990). To determine whether ADE of RRV infection would occur, each monocyte and macrophage cell line was infected with RRV complexed with serial dilutions of heat-inactivated anti-RRV serum (neutralizing titre of 1/160) obtained from a patient (JFF) who had recovered from EPA. Each serum dilution (200 µl) was first incubated with 200 µl of RRV containing 10^6 TCID$_{50}$ at room temperature for 1 h. The virus-antibody complex was used to infect 10^6 cells as above with TCID$_{50}$ determination and IFA were performed at 18 h.p.i. Subneutralizing levels of antibody dramatically increased the level of infection of U937 and the murine macrophage lines, and resulted in infection of the monocyte line, Mono Mac 6 (Fig. 1). Maximum enhancement of infection occurred at an antibody dilution of 1:100 (\log_{10} antibody dilution of -2) with the 1:10 dilution resulting in virus neutralization. Both the number of cells infected (measured by IFA) and virus production (also indicated as fold enhancement values) were increased in the presence of subneutralizing levels of antibody (Fig. 1). The ADE curves conform to the criteria for viral enhancement described by Morens & Halstead (1990). Control sera containing no RRV-specific IgG failed to give ADE of RRV infection (Table 1). Neither lymphoblastoid cell lines nor B cell blasts (both Fc receptor positive) could be infected using ADE. ADE via the complement receptor (Cardosa et al., 1983) could not be detected using IgM-positive/IgG-negative sera and Mono Mac 6 in the presence of complement (data not shown).

The ADE phenomenon, clearly demonstrated here for RRV, is implicated in the aetiology of dengue haemorrhagic fever, in which a second infection with a different dengue serotype is exacerbated by cross-reacting subneutralizing IgG raised during the first infection (Morens & Halstead, 1990). Different RRV serotypes or secondary infections with RRV have not been reported, however, pre-existing enhancing IgG titres might arise from previous infections with serologically related alphaviruses, for example Barmah Forest or Sindbis. Paired sera from three EPA patients showed that ADE titres for RRV did not exist prior to the development of RRV IgG, showing that development of EPA was not due to pre-existing enhancing antibodies. Sera from asymptomatic RRV-seropositive individuals and chronic EPA patients also had similar enhancing titres and sera specific for the serologically related Barmah Forest virus failed to enhance RRV infection (Table 1). No simple correlation between ADE titres and EPA could thus be established and the role, if any, of ADE in EPA pathogenesis remains elusive. One might speculate that ADE operates early in infection when rising (but still subneutralizing) IgG titres coincide with the serum viraemia (Seay et al., 1981) giving rise to increased infection of macrophages and monocytes. Such a mechanism may be important for establishing a persistent infection in these cells (Kanno et al., 1993).

The importance of tumour necrosis factor-α (TNF-α)
in the immunopathology of rheumatoid arthritis (RA) (Elliott et al., 1993) and the production of TNF-α by monocytes and macrophages following infection with some viruses (Chang & Shaio, 1994) prompted an extensive examination of RRV- and ADE-induced TNF-α production by the cell lines, PBMC and PBMC monocyte-derived macrophages. Cells were infected with RRV (m.o.i. = 1), with and without ADE (antibody dilutions as Fig. 1) and supernatants taken at 3, 6, 12, 24 and 48 h p.i. The standard L929 bioassay was used to quantify TNF-α (Hogan & Vogel, 1994) after exposure of the supernatants to 960 µW/cm² of UV-C for 2 h to inactivate the RRV. Lipopolysaccharide-treated cultures (5 µg/ml; positive controls) consistently produced TNF-α levels 10-fold higher than untreated cells (negative controls) and always exceed 2 (usually 4–7) ng/ml TNF-α. In this extensive series of experiments no RRV-induced TNF-α could be detected (data not shown). Although TNF-α has clearly been shown to be an important mediator of RA (Elliott et al., 1993) an involvement of this cytokine has not been reported for viral arthritides. The cellular infiltrate of RA is also polymorphonuclear whereas it is predominantly mononuclear in EPA effusions. The cytokines found in RA joint effusions are also predominantly macrophage-derived (Elliott et al., 1993) whereas the EPA effusions contain elevated levels of the T cell-derived cytokine, IFN-γ (J. R. E. Fraser & A. L. Cunningham, personal communication). The cytokines and the pathological mechanisms responsible for RA and EPA, where the arthritides have an autoimmune and infectious (viral) aetiology respectively, may thus be quite distinct (Simon et al., 1994).

Alphaviruses are classically believed to induce rapid lysis (or CPE) of infected vertebrate cells, however, recently several reports have shown that alphavirus infection can be persistent (Levine et al., 1994). The possible persistence of RRV infection in monocyte/macrophages was analysed by infecting RAW 264, J774A.1 and Mono Mac 6 (the latter by ADE using a 1:100 dilution of anti-RRV antibody) and determining RRV titres in the supernatants at the indicated time points. The RAW 264 and J774A.1 cultures continued to produce virus for over 50 days p.i. Virus yields from Mono Mac 6, however, dropped to zero by day 6 p.i. (Fig. 2). J774A.1 and Mono Mac 6 cultures showed no signs of overt CPE. RAW 264 showed overt CPE by day 3 p.i. but the few remaining cells in this culture divided and reached the original input cell number by day 10 p.i. No overt CPE was observed in these cultures after day 6 p.i. despite continuous production of virus. Virus taken from day 40 p.i. cultures was able to induce overt CPE in fresh RAW 264 cells. About 5–10% of the persistently infected RAW264 cells were IFA-positive at day 40 and 50 p.i. (data not shown). ADE infection of Raw 264 did not change these observations or the pattern of persistent virus production (data not shown). While viral persistence in monocyte/macrophages has previously been reported (Kanno et al., 1993; Kurane et al., 1990; Narayan et al., 1992) this is the first report, to our knowledge, of alphavirus persistence in this cell type.

Recent developments in the understanding of infectious arthritides have highlighted the importance of persistent organisms in synovial macrophages in the pathogenesis of viral (Narayan et al., 1992; May et al., 1994) and bacterial (Keat & Hughes, 1993) arthritides. RRV antigens can be detected in macrophages from EPA effusions. However, the limited early attempts at isolating infectious RRV from the joint fluids were unsuccessful and occurred before the highly sensitive C6/36 mosquito cell line was established (Fraser, 1986; J. R. E. Fraser, personal communication). These experiments are difficult to repeat as joint aspirations are now considered unethical for EPA patients. The detection of viable RRV in EPA effusions would clearly be an important step toward understanding the pathogenesis of EPA.

Thanks to D. Philips, Queensland (Qld) State Health Department for Barmah Forest virus; Dr I. Gardner and the staff (Qld. Med. Labs.) for sera and serology; M. Sweet and Dr D. Hume (Uni. Qld.) for endotoxin assays; Drs R. Weir (Aust. Natl. Uni.) and R. Hall (Uni. Qld.) for RRV antibody. The work was funded by the following Australian agencies: National Health and Medical Research Council, Mayne Bequest Fund, Australian Centre for International and Tropical Health, Charles and Sylvia Viertel Charitable Trust, and Qld. Health Arbovirus Research Fund.
References

(Received 22 May 1995; Accepted 13 October 1995)