Mapping of the intermolecular association of the human T cell leukaemia/lymphotropic virus type I p12 and the vacuolar H+-ATPase 16 kDa subunit protein

Igor J. Koralnik, James C. Mulloy, Thorkell Andresson, Jake Fullen and Genoveffa Franchini

Laboratory of Tumor Cell Biology, Building 37, Room 6A09, National Cancer Institute, 37 Convent Dr MSC 4255, National Institutes of Health, Bethesda, MD 20892-4255 and Department of Pathology, Georgetown University, Washington, DC 20007, USA

The p12 protein, a small hydrophobic protein encoded by the human T cell leukaemia/lymphotropic virus type I pX region, contains a proline-rich region located between two putative transmembrane (TM) domains. The p12 protein is associated with cellular endomembranes, and physically binds to the 16 kDa subunit of the vacuolar H+-ATPase proton pump. To investigate the nature of the 16 kDa and p12 interaction and to determine the oncogenic domain of p12, we constructed p12 mutant proteins in which various portions of the TM domains were deleted, as well as a p12 mutant containing a single amino acid substitution. These mutants were tested for binding to the 16 kDa subunit of the vacuolar H+-ATPase in HeLa/Tat cells and for the capability to potentiate transformation by bovine papillomavirus type I E5 oncoprotein in mouse C127 cells. The results indicated that both TM domains of the p12 protein were dispensable for its interaction with the 16 kDa protein, whereas partial or complete deletion of the proline-rich region resulted in decreased or no binding of the p12 protein to the 16 kDa subunit. Immunofluorescence analysis of HeLa/Tat cells transfected with the p12 mutants showed that deletion of the proline-rich region did not alter the subcellular localization of these mutant p12 proteins, suggesting direct involvement of the proline-rich domain in binding rather than the failure of these p12 mutants to reach the appropriate cellular compartment. Mapping of 16 kDa subunit mutants in binding with the p12 protein suggested that molecular determinants located between the second and third TM domain of the 16 kDa protein might be involved in this interaction. Finally, most of the p12 mutants lost the ability to potentiate transformation of C127 cells indicating that binding of p12 to the 16 kDa subunit does not directly correlate with oncogenicity.

Introduction

Human T cell leukaemia/lymphotropic virus type I (HTLV-I) (Poiesz et al., 1980; Miyoshi et al., 1981; Gallo, 1986) induces T cell leukaemia (Hinuma et al., 1981; Robert-Guroff et al., 1982), most often after a long period of latency in vivo, and transforms T cells in vitro (Miyoshi et al., 1981; Yamamoto et al., 1982; Markham et al., 1983; Popovic et al., 1983). The mechanism of HTLV-I transformation in vitro and in vivo is poorly understood. The HTLV-I transactivator protein, p40tax (Cann et al., 1985; Felber et al., 1985; Sodroski et al., 1985), has been shown to transcriptionally activate several cellular genes whose expression is relevant to T cell activation and proliferation, including the interleukin 2 receptor alpha (IL-2Rα) chain, IL-2 and c-fos genes (Inoue et al., 1986; Cross et al., 1987; Siekevitz et al., 1987; Fuji et al., 1988; Grassman et al., 1989; Nagata et al., 1989). Furthermore, HTLV-I immortalization and transformation of T cells in vitro is associated with alteration in the expression of a cascade of specific cellular kinases (Maruyama et al., 1987; Koga et al., 1989; Yamanashi et al., 1989; Mills et al., 1992) including p56lck (Hatakeyama et al., 1991) triggered by the IL-2/IL-2R interaction. The tax gene has also been shown to directly transform rat fibroblasts in vitro (Tanaka et al., 1990) and, when expressed in the context of a herpesvirus saimiri-based vector, tax immortalizes T cells in vitro (Grassman et al., 1989). However, tax appears to be insufficient to induce ligand (IL-2)-independent growth of human T cells (Akagi & Shimotohno, 1993) and the cooperation of other oncoproteins of cellular or viral origin could be postulated.

* Author for correspondence. Fax +1 301 496 8394.
† Present address: Neurology Department, Brigham and Women's Hospital, Boston, MA 02115, USA.
Recently, a 12 kDa protein (p12\(^1\)) encoded by the HTLV-I open reading frame I (orf I) (Koralnik et al., 1992, 1993) has been shown to be weakly oncogenic as well (Franchini et al., 1993). The p12\(^1\) protein is a small, hydrophobic, membrane-associated protein which has some structural similarity to the bovine papillomavirus type 1 (BPV-1) E5 oncprotein (Schlegel et al., 1986) and potentiates the E5 transforming activity in C127 mouse cells (Franchini et al., 1993). Both the p12\(^1\) and E5 proteins physically bind to the 16 kDa subunit of the vacuolar H\(^+\)-ATPase (Goldstein et al., 1991; Franchini et al., 1993), a proton pump ubiquitous in cellular organelles, which regulates their acidification (Mandel et al., 1988; Nelson, 1989).

The biological significance of these protein interactions is presently unclear. In an attempt to unravel this complex protein interaction, we investigated the nature of the binding of the p12\(^1\) and 16 kDa proteins by generating genetic mutants of both proteins. Furthermore, we studied the cellular localization of the HTLV-I p12\(^1\) mutants and their transforming activity in cooperation with E5 in mouse C127 cells.

Methods

Generation of the HTLV-I p12\(^1\) and the 16 kDa protein mutants. Truncated p12\(^1\) cDNAs were constructed by PCR amplification of previously described pX-orf I or pX-orf I AU1 cDNAs [carrying the five amino acid (aa) AU1 tag] (Koralnik et al., 1992) using the primer sets whose DNA sequence is provided below. The primers M35/PX1AS were used to generate the p12\(^1\) \(\Delta\)14 mutant, which lacks the first 14 aa of the p12\(^1\) protein. The M35/PX1AS primers were used for p12\(^1\) \(\Delta\)35, which lacks the first 35 aa, and primers M47/PX1AS for p12\(^1\) \(\Delta\)47, which lacks the first 47 aa. The primers set M35/T70 amplified a DNA fragment encoding aa 36-70 of p12\(^1\) (mutant p12\(^1\) 36-70), and the primers M47/T70 generated mutant p12\(^1\) 48-70, which encompasses aa 48-70. The primers pair orf I/T43 amplified only the first 43 aa of p12\(^1\), (p12\(^1\) 43) and primers orf I/T70 only the first 70 aa of the p12\(^1\) protein (p12\(^1\) 70). Finally, primers MO/PX1AS were used to eliminate the initiation codon (ATG) of p12\(^1\) which was mutated to a TTG, and to introduce a termination codon at the third codon position (p12\(^1\) \(\Delta\)ATG). To generate the single aa change Q \(\rightarrow\) G in the p12\(^1\) Q \(\rightarrow\) G mutant protein the codon CAA for the glutamine in position 47 was mutated to GGA which encodes a glycine, by using double PCR with separate primers orf I/MGAS and MGS/PX1AS. Amplified products (0.5 ng) were then annealed and amplified together using the primers orf I/PX1AS. For all the p12\(^1\) mutants 30 cycles of PCR amplification were performed as follows: denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 2 min with a 2 s increase of this incubation time per cycle, and extension of the final cycle at 72 °C for 7 min. All the amplified products were purified using the Magic PCR prep kit (Promega) and cloned at the XbaI-BamHI sites of the expression vector pHCVM/HSPA. The DNA sequences of each plasmid containing the truncated or mutagenized form of the p12\(^1\) gene were obtained using the Sanger method (Sanger et al., 1977).

The sequences of the primers are as follows: PX1AS, 5' TTT GAG GAT CCG CTG TGC TTG ACG GTT TGC 3'; ORF I, 5' CAT AT TCT AGA CAC CTC GCC TTC CAA CTT 3'; M14, 5' CAT ATT CTA GAG CTA CCG TCA TGG CGC TCC TGC 3'; M35, 5' CAT ATT CTA GAC CGA CTA TGG CGC CTG GCC TGC TCT 3'; M47, 5' CAT ATT CTA GAC CTT TGG AAA TGC TCA GCA ATC 3'; T43, 5' TTG GAT CCA GGATCC CTA CTT TGT GGA 3'. The amplified fragment was cleaved with the HindIII and BamHI enzymes.

Radioimmunoprecipitation of metabolically labelled proteins. The cDNA of the 16 kDa protein (Mandel et al., 1988), carrying the HA1 epitope (Mandel et al., 1988), was inserted into the eukaryotic expression plasmid pTA9, containing the HA1 cDNA for the bovine 16 kDa protein tagged with the HA1 epitope (Mandel et al., 1988) using the oligodeoxynucleotide primers ON#9 5' CTAGTA TCTAGA GCCACC ATG TAC CCA TAC GAT GTT CCA GAT 3'; ON#6 5' CAT CCA GGTACC CTA CTT TGT GGA 3'. The amplified fragment was cleaved with XbaI and BamHI and cloned at the corresponding sites of the vector pHCVM/HSPA.

The fully expressed proteins were then purified using the monoclonal antibody (a monoclonal antibody that recognizes the HA1 epitope). The purified proteins were labelled with [\(\text{H}^3\)]methionine and [\(\text{H}^2\)]methionine for 4 h. The cell lysate was then immunoprecipitated with the monoclonal antibody specific for the HA1 epitope.
antibodies 12CA5 or AU1, directed against the HA1 epitope or the AU1 epitope, respectively, as previously described (Koralnik et al., 1992).

Immunofluorescence. Indirect immunofluorescence was performed on HeLa/Tat-transfected cells expressing the p121 mutants. Twenty-four hours after transfection cells were fixed on glass slides in 3.7% formaldehyde for 20 min at room temperature. The mouse monoclonal antibody AU1 was diluted 1:50 in phosphate-buffered saline (PBS) with 10% goat serum and 0.1% saponin. Cell and primary antibodies were incubated for 1 h at 37 °C, and the slides were washed several times in PBS and incubated for 45 min at 37 °C with goat anti-mouse fluoresceinated antibodies diluted 1:20 in PBS with 10% goat serum and 0.1% saponin. After several washes in PBS, cells were counterstained for 10 min at room temperature in Evans blue, mounted in glycerol, and examined with a Leitz Wetzlar microscope with a 50× or 63× objective.

Focus forming assay. Mouse C127 cells were plated at a density of 5 x 10^5 per 60 mm dish. The next day cells were transfected in duplicate dishes over night using the calcium phosphate procedure, with 0.5 µg of the E5 DNA (pJS21) and 10 µg of the p121 or the p122 mutant cDNAs cloned in pHCMV/HSPA. Cells were then washed with medium, glycerol-shocked in 15% glycerol for 1 min, washed twice with PBS and allowed to recover for 24 h before trypsinization in 100 mm dishes. Cell monolayers were kept in culture for 3 weeks in DMEM-10% fetal calf serum, and the medium was changed twice a week. Foci were counted by direct visualization with a light microscope before and after staining and fixation with 1% methylene blue in ethanol for 30 min at room temperature.

Results

General strategy in the construction of p121 and 16 kDa mutants

The p121 protein has been previously shown to be localized in the cellular endomembranes (Koralnik et al., 1993). Computer analyses of the p121 protein revealed two putative transmembrane regions encompassing aa 12–32 and aa 48–68 (Franchini et al., 1993) suggesting that the p121 protein transverses the cellular endomembranes twice as schematically represented in Fig. 1. The 16 kDa protein is very hydrophobic and is thought to transverse the cellular endomembranes of organelles (lysosome, endosome and Golgi) at least four times (Nelson, 1989) (Fig. 1). The orientation of the 16 kDa protein is very hydrophobic and is thought to transverse the cellular endomembranes of organelles (lysosome, endosome and Golgi) at least four times (Nelson, 1989) (Fig. 1). The orientation of the 16 kDa protein is known and indicated in Fig. 1, whereas for the p121 protein it is unknown. To investigate the nature of the interaction between these two hydrophobic proteins, mutants of p121 were constructed that lacked one or another transmembrane (TM) domain (TM-1 and TM-2), as well as various portions of the amino terminus or the carboxy terminus of the p121 protein. Similarly, mutants of the 16 kDa protein lacking TM-1 and TM-2, TM-3 and TM-4, or TM-4 were generated. Furthermore, the glutamine in p121 was changed to a glycine since the glutamine conserved between the BPV-1 E5 and HTLV-I p121 appears to be crucial in E5-induced transformation, as well as in the binding of E5 to the 16 kDa protein (Goldstein et al., 1991, 1992b). In addition, the glutamic acid in the fourth TM domain of 16 kDa, also important in the binding to E5 (Andresson et al., 1995), was changed to an arginine. All p121 and 16 kDa mutants were tagged with the AU1 or HA1 epitope as previously described.
Fig. 3. (a, b, c) Cellular localization of the p12I mutant proteins. On the top of each panel a schematic representation of each of the p12I mutants is provided relative to their putative structure (the orientation and insertion of the p12I mutants in the membrane is purely speculative and is used only for descriptive purposes) and on the bottom are the results of the indirect immunofluorescence assay using antibodies against the AU1 tag epitope.
HTLV-I p12i binding to the vacuolar ATPase

Fig. 4. Binding of the 16 kDa mutants to the wild-type p12i protein. (a) Depiction of the wild-type 16 kDa protein with its four TM domains (solid bars) with mutants lacking the third and fourth domains (\(\alpha_{1,2}\) 16 kDa mutant) and the first and second domains (\(\alpha_{3,4}\) 16 kDa mutant). In mutant Arg-143 16 kDa, the negatively charged glutamic acid at position 143 was mutated to a positively charged arginine residue. (b) Results of immunoprecipitation of the 16 kDa wild-type and mutant proteins carrying the AU1 epitope, and p12i carrying the HA1 epitope, coexpressed in HeLa/Tat cells.

Binding of HTLV-I p12i mutants to the 16 kDa subunit of the vacuolar \(H^{+}\)-ATPase

The p12i and p12l mutant cDNAs, all carrying the AU1 epitope, were cotransfected separately with the 16 kDa cDNA, carrying the HA1 epitope at the amino terminus, in HeLa/Tat cells. The cell lysate from each cotransfection was then divided and immunoprecipitated with monoclonal antibody \(\alpha\) AU1 or the monoclonal antibody 12CA5. Both the p12i and 16 kDa proteins were promptly recognized by the antibodies against the respective tags when transfected alone as shown in Fig. 2 (lanes 1, 11 and 12). As previously demonstrated (Franchini \textit{et al.}, 1993), cotransfection of p12i and 16 kDa resulted in the co-immunoprecipitation of both proteins using the antibodies against the 16 kDa tag (Fig. 2, lane 13).

Deletion of the amino-terminal 14 and 35 aa of p12l did not alter the binding of the two proteins (see mutant p12i \(\Delta 14\) and p12l \(\Delta 35\), Fig. 2, lanes 3, 4, 14 and 15), whereas the amount of the p12i \(\Delta 47\) mutant protein co-immunoprecipitated with 16 kDa was greatly decreased (Fig. 2, lanes 5 and 16). These data suggest that the region in p12l included between aa 36 and aa 48 greatly influences the interaction between these proteins. This interpretation is supported by the lack of binding of the p12i \(48-70\) as well as by the reduced binding of the p12l \(36-70\) mutants to the 16 kDa protein (Fig. 2, lanes 7, 8, 18 and 19). Consistent with this interpretation is the association of both p12i \(70\) (Fig. 2, lanes 6 and 17) and p12i \(43\) (data not shown) mutants, which contain the proline-rich region, to the 16 kDa protein. Finally, the change of a glutamine to a glycine in the p12i Q \(\rightarrow\) G mutant did not alter binding to the 16 kDa protein (Fig. 2, lanes 9 and 20).

Cellular localization of the p12l mutants

Indirect immunofluorescence was performed in HeLa/Tat cells transfected with each of the p12l mutants. The p12i \(\Delta 14\) and p12l \(\Delta 35\) mutants localized to the cellular endomembranes, as previously demonstrated for the p12i protein (Koralnik \textit{et al.}, 1993) (Fig. 3a). Similarly, the cells transfected with mutants p12i \(\Delta 47\) and p12l \(48-70\) displayed an immunofluorescence pattern, consistent with the localization of the mutant proteins to the cellular endomembrane (Fig. 3b). Similarly, the changes of a glutamine to glycine did not alter the cellular localization of p12i Q \(\rightarrow\) G (Fig. 3c).

Mapping of the 16 kDa interacting region(s) to the p12i protein

Three 16 kDa mutant proteins carrying the AU1 epitope (T. Andresson and others, unpublished observations) were used in the cotransfection assay with the wild-type p12i protein (Fig. 4a). Mutant Arg-143 16 kDa had the leucine in position 143 substituted by arginine. The \(\alpha_{1,2}\) 16 kDa lacks both third and fourth TM domains and the \(\alpha_{3,4}\) 16 kDa consists of the third and fourth TM domains only.

Cotransfection experiments with the 16 kDa and the p12i tagged cDNAs revealed upon immunoprecipitation, binding of the p12i protein to the wild-type 16 kDa and the Arg-143 16 kDa, as well as to the \(\alpha_{1,2}\) and \(\alpha_{3,4}\) 16 kDa mutants (Fig. 4b, lanes 1–8). Together, these data
which showed decreased but consistent enhancement in Table 1. With the exception of the p12~Q~G mutant effect, none of the other p12~ mutants had a significant biological effect on E5 transformation, suggesting that experiments performed on duplicate plates are presented as well as p121 wild-type, was evaluated. Results of two experiments performed with the BPV-1 E5 oncoprotein was investigated. The binding studies of the p12~ mutants to the 16 kDa protein showed the importance of the p12~ proline-rich domain, included between aa 36 and 48 of the p12~ protein, in the interactions of these proteins. The correlation between binding to the 16 kDa protein and the biological activity of p12~ needs to be re-evaluated using single or few aa p12~ mutants. However, our present data already suggest that a clear correlation will not be found since mutants binding efficiently to 16 kDa failed to show biological activity at least in this cell system. Similarly, a lack of clear correlation was shown with E5 oncogenicity and binding to the 16 kDa protein (Goldstein et al., 1992b).

The binding of 16 kDa mutants with the wild-type p12~ indicated that possibly more than one domain of 16 kDa is mediating the interaction of the proton pump subunit with p12~. This contrasts with previous experiments performed with the BPV-1 E5 protein which indicated that E5 binds to the fourth TM domain of the 16 kDa protein. The E5 polar glutamine residue appears to be important in this interaction. Recently, the E5 proteins of human papillomavirus (HPV)-6 and -16 have been shown to interact with 16 kDa (Conrad et al., 1993) indicating that this association is maintained in the human strains as well.

The 16 kDa protein is a membrane component of the vacuolar H+-ATPase, which is also found in clathrin-coated vesicles, lysosomes, endosomes, Golgi vesicles and synaptic vesicles; this proton pump is responsible for the acidification of these intracellular vesicles and might have a crucial role in dissociating ligand-receptor complexes (Nelson, 1989; Finbow et al., 1991). Interference with the normal function of the proton pump through binding of viral proteins such as HTLV-I p12~, BPV E5 or HPV E5 proteins might result in dysregulation of growth factor/receptor interaction and lead to increased recycling of receptors to the cell surface (Finbow et al., 1991). This concept is supported by the finding that epidermal growth factor receptor down-regulation is observed in keratinocytes transformed by the HPV 16 E5 (Straight et al., 1993); additionally, the 16 kDa protein appears to be the mediator of E5 binding to the platelet-derived growth factor receptor in the

suggest that the p12~ protein interacts with more than one domain of the 16 kDa protein. Alternatively, the p12~ could bind to the region of 16 kDa included between the second and third TM domain since this region is present in all the 16 kDa mutants tested.

The intermolecular association between p12~ and 16 kDa differs from that observed with the BPV-1 E5. E5 appears to bind mainly to the 16 kDa fourth TM domain and the binding is greatly decreased when a polar charged aa, such as arginine, is introduced in the fourth TM domain (T. Andresson and others, unpublished observations). As we have demonstrated, such a change did not interfere with the p12~ and 16 kDa interaction. Although our data do not enable us to definitively delineate the regions of the 16 kDa protein which interact with p12~, they clearly demonstrate differences between the E5 and p12~ binding to the 16 kDa protein.

Phenotype of the p12~ mutants cotransfected with E5 in C127 mouse cells

We have previously demonstrated that although p12~ alone does not transform C127 mouse cells, it does enhance the E5-mediated transforming activity (Franchini et al., 1993). To investigate the contribution of different portions of the p12~ protein to this biological activity, each p12~ mutant was cotransfected with E5 DNA (pJS21) and the number of foci induced in the absence and in the presence of any given p12~ mutant, as well as p12~ wild-type, was evaluated. Results of two experiments performed on duplicate plates are presented in Table 1. With the exception of the p12~ Q~G mutant which showed decreased but consistent enhancement effect, none of the other p12~ mutants had a significant biological effect on E5 transformation, suggesting that all the various deletions introduced in this small protein greatly affect its biological activity.

Biological activity of HTLV-I p12~ mutants cotransfected with E5 in C127 mouse cells

<table>
<thead>
<tr>
<th></th>
<th>Exp. 1</th>
<th>Exp. 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fold increase</td>
<td>Fold increase</td>
<td>fold increase</td>
</tr>
<tr>
<td>E5</td>
<td>54</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>E5 + p12~</td>
<td>472</td>
<td>8-7</td>
<td>250</td>
</tr>
<tr>
<td>E5 + A14</td>
<td>76</td>
<td>1-4</td>
<td>142</td>
</tr>
<tr>
<td>E5 + A35</td>
<td>86</td>
<td>1-6</td>
<td>70</td>
</tr>
<tr>
<td>E5 + A47</td>
<td>74</td>
<td>1-4</td>
<td>76</td>
</tr>
<tr>
<td>E5 + 36~70</td>
<td>164</td>
<td>3-0</td>
<td>76</td>
</tr>
<tr>
<td>E5 + 48~70</td>
<td>58</td>
<td>1-0</td>
<td>72</td>
</tr>
<tr>
<td>E5 + 43</td>
<td>12</td>
<td>0-2</td>
<td>50</td>
</tr>
<tr>
<td>E5 + 70</td>
<td>82</td>
<td>1-5</td>
<td>90</td>
</tr>
<tr>
<td>E5 + Q~G</td>
<td>184</td>
<td>3-4</td>
<td>150</td>
</tr>
<tr>
<td>E5 + AATG</td>
<td>62</td>
<td>1-1</td>
<td>64</td>
</tr>
<tr>
<td>Vector</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* The foci number was derived from the average count of duplicate plates.

Discussion

The data reported here describe the expression, the cellular localization, and the binding to the 16 kDa subunit of the vacuolar H+-ATPase of the HTLV-I p12~ mutant proteins. Furthermore, the ability of these HTLV-I p12~ mutants to potentiate cell transformation in cooperation with the BPV-1 E5 oncoprotein was investigated. The binding studies of the p12~ mutants to the 16 kDa protein showed the importance of the p12~ proline-rich domain, included between aa 36 and 48 of the p12~ protein, in the interactions of these proteins. The correlation between binding to the 16 kDa protein and the biological activity of p12~ needs to be re-evaluated using single or few aa p12~ mutants. However, our present data already suggest that a clear correlation will not be found since mutants binding efficiently to 16 kDa failed to show biological activity at least in this cell system. Similarly, a lack of clear correlation was shown with E5 oncogenicity and binding to the 16 kDa protein (Goldstein et al., 1992b).

The binding of 16 kDa mutants with the wild-type p12~ indicated that possibly more than one domain of 16 kDa is mediating the interaction of the proton pump subunit with p12~. This contrasts with previous experiments performed with the BPV-1 E5 protein which indicated that E5 binds to the fourth TM domain of the 16 kDa protein. The E5 polar glutamine residue appears to be important in this interaction. Recently, the E5 proteins of human papillomavirus (HPV)-6 and -16 have been shown to interact with 16 kDa (Conrad et al., 1993) indicating that this association is maintained in the human strains as well.

The 16 kDa protein is a membrane component of the vacuolar H+-ATPase, which is also found in clathrin-coated vesicles, lysosomes, endosomes, Golgi vesicles and synaptic vesicles; this proton pump is responsible for the acidification of these intracellular vesicles and might have a crucial role in dissociating ligand-receptor complexes (Nelson, 1989; Finbow et al., 1991). Interference with the normal function of the proton pump through binding of viral proteins such as HTLV-I p12~, BPV E5 or HPV E5 proteins might result in dysregulation of growth factor/receptor interaction and lead to increased recycling of receptors to the cell surface (Finbow et al., 1991). This concept is supported by the finding that epidermal growth factor receptor down-regulation is observed in keratinocytes transformed by the HPV 16 E5 (Straight et al., 1993); additionally, the 16 kDa protein appears to be the mediator of E5 binding to the platelet-derived growth factor receptor in the
transformed C127 cells (Kulke & DiMaio, 1991; Petti et al., 1991; Goldstein et al., 1992a; Petti & DiMaio, 1992). The p121 protein also has been shown to interact specifically with the IL-2R β and γ but not α chains (J. C. Mulloy and G. Franchini, unpublished observations) suggesting its possible involvement in the mechanism of IL-2 signalling and ultimately T cell transformation. A possible role for p121 in signalling is further supported by the finding that the p121 protein interacts specifically with the acidic region of the IL-2R α chain which has been shown to be the target of p56lck (Hatakeyama et al., 1991), a major tyrosine protein-kinase of T cells. Thus, the understanding of the 16 kDa and p121 interactions might help in elucidating the role of HTLV-I p121 protein in immortalization and/or transformation of human T cells and at the same time provide insights into the physiology of the IL-2R signalling.

We are grateful to Dr R. C. Gallo for his continuous support, Dr R. Schlegel for helpful discussions, and L. Anderson for editorial assistance. Part of this research was supported by the Swiss National Fund for Scientific Research.

References

(Received 16 September 1994; Accepted 4 April 1995)