Identification and characterization of an early gene in the *Lymantria dispar* multinucleocapsid nuclear polyhedrosis virus

David S. Bischoff and James M. Slavicek*

USDA Forest Service, Northeastern Forest Experimental Station, Forest Sciences Laboratory, 359 Main Road, Delaware, OH 43015, USA

The *Lymantria dispar* multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding G22 was cloned and sequenced. The G22 gene codes for a 191 amino acid protein with a predicted M r of 22000. Expression of G22 in a rabbit reticulocyte system generated a protein with an M r of 24000, in close agreement with the molecular mass predicted from the nucleotide sequence. G22 is not significantly homologous to any known protein, nor is a G22 homologue present in the *Autographa californica* MNPV (AcMNPV). Temporal expression studies indicated that the G22 gene was transcribed at readily detectable levels in the presence of cycloheximide. Transcripts were detected immediately after the virus adsorption period and throughout the infection cycle. The early transcriptional start sites of G22 map to a sequence that resembles a subset of RNA polymerase II promoters/start sites that are found upstream of *Drosophila melanogaster* developmental and retrotransposon genes which lack TATA box motifs. Several consensus late baculovirus promoter/mRNA start site sequences (ATAAG) were identified upstream of the G22 gene start codon.

Introduction

Nuclear polyhedrosis viruses (NPVs) are members of the *Baculoviridae*. These viruses produce two morphological forms, a budded virus form and a virus form that is occluded into a paracrystalline matrix termed a polyhedron. During the early stages of infection, budded virus is produced that infects a variety of cell types and is thought to bring about a systemic infection in the insect. During the later stages of the infection process the occluded form is produced and is released upon death of the insect (for review see Blissard & Rohrmann, 1990). Baculoviruses have large double-stranded DNA genomes ranging from approximately 80 to 165 kbp which have the potential to encode more than 150 proteins. Genes are expressed in a transcriptionally regulated temporal cascade. Early gene products are expressed by the host transcription and translation machinery, and can also be transcriptionally trans-activated by viral gene products (Fuchs et al., 1983; Huh & Weaver, 1990; Glocke et al., 1992). Examples of virus trans-activation have been seen in the *Autographa californica* multinucleocapsid nuclear polyhedrosis virus (AcMNPV). AcMNPV 1E-0, for example, activates several promoters including IE-1 and 39K (Kovacs et al., 1991). Early gene products control the expression of late and very late viral genes. Late gene expression occurs concomitant with DNA replication (Kelly & Lescott, 1981). These genes are transcribed by a virus-induced z-amanitin-resistant RNA polymerase which recognizes a specific late promoter sequence (Guarino & Summers, 1988; Rohrmann, 1986). Late gene products are required for nucleocapsid and polyhedron formation.

The *Lymantria dispar* MNPV (LdMNPV) is pathogenic to the gypsy moth, a serious forest and urban tree-defoliating pest in the north-eastern United States. The genome of LdMNPV is approximately 162 kbp in length with a G + C content of 60% (McCarthy et al., 1979) compared to a genome of 133 kbp with a G + C content of 42% in AcMNPV (Harrap & Payne, 1979). The genes present in the genomes of these viruses are organized in a similar array within short segments; however, overall the organization is not collinear (Bischoff & Slavicek, 1994; Bjornson & Rohrmann, 1992a, b; Riegel et al., 1994). Phylogenetic analyses of the polyhedrin gene sequences of baculoviruses suggest that LdMNPV is evolutionarily more distant from AcMNPV than all other MNPVs investigated (Zanotto et al., 1993).

The viral genome of LdMNPV has been cloned and mapped with restriction endonucleases (Riegel et al., 1994; Smith et al., 1988), and transcription and translation maps have been generated (Slavicek, 1991). A number of LdMNPV genes that are also present in
AcMNPV have been identified and characterized, including *ecdysteroid UDP-glucosyl transferase* (Riegel et al., 1994), *DNA polymerase* (Bjornson et al., 1992), *polyhedral envelope* (Bjornson & Rohrmann, 1992a), *polyhedrin* (Smith et al., 1988), *p39 nucleocapsid* (Bjornson & Rohrmann, 1992b) and *viral protein kinase* (Bischoff & Slavicek, 1994).

In this report we extend the characterization of LdMNPV by cloning and characterizing the G22 gene. This is the first early gene identified in LdMNPV that is expressed at high levels in the presence of cycloheximide. (Bjornson & Rohrmann, 1992b) and genes which lack TATA motifs.

Methods

Cells and virus. *L. dispar* 652Y cells were grown as monolayers in Goodwin's IPL-52B medium supplemented with 625 mm-glutamine and 10% fetal bovine serum. Cell cultures were inoculated with LdMNPV clonal isolate 5-6 (Slavicek, 1991) at an m.o.i, of 10. Virus was removed after a 1 h adsorption period and replaced with fresh medium.

RNA isolation and Northern blot analysis. Infected *L. dispar* cells were harvested at various times post-infection (p.i.). Cytoplasmic RNA was isolated as described by Friesen & Miller (1985). For inhibitor studies, cells were treated with cycloheximide at 100 μg/ml for 30 min prior to virus adsorption. Cycloheximide was maintained in the medium throughout the time course. Total RNA was separated on 12% agarose gels containing formaldehyde and transferred to nitrocellulose. northern blotting was performed as described by Mahmoudy & Lin (1989). Probes were radiolabelled with a nick-translation kit (BRL) and [α-32p]dCTP (NEN). A 30 base oligonucleotide is complimentary to the sequence shown in Fig. 3 (positions 662-692) was end-labelled with [γ-32p]ATP (NEN) and used as a strand-specific probe that hybridized to the G22 transcript.

Construction of λ11 cDNA library. A cDNA library was constructed using the RiboClone cDNA synthesis system (Promega). Poly(A)+ RNA was isolated and purified from *L. dispar* cells infected with LdMNPV at 7 h p.i. First-strand synthesis was accomplished with avian myeloblastosis virus (AMV) reverse transcriptase using an oligo(dT) primer with an adapter containing a unique NotI site. After second-strand synthesis the cdNA, EcoRI linkers were ligated to the ends. The cDNAs were then cloned into λgt11 after digestion with EcoRI and NotI.

Viral DNA isolation and Southern blot analysis. Non-occluded virus from plaque-purified LdMNPV 5-6 was isolated from infected *L. dispar* cells, and used as a source of genomic DNA for Southern blot analysis. Medium was decanted from the cells, and cellular debris was removed by centrifugation at 500 g for 10 min. Virus was pelleted by centrifugation at 104000 g for 45 min at 4 °C. The pellet was resuspended in 0.1× TE at 4 °C overnight. One volume of 2× DNA extraction buffer (20 mM-Tris–HCl pH 7.5, 120 mM-NaCl, 20 mM-EDTA pH 8.0, 2% SDS and 40 μg/ml proteinase K) was added, and the solution was incubated for 1 h at 50 °C. The solution was adjusted to 1% Sarkosyl and incubated for an additional 1 h at 50 °C. Viral DNA was extracted with 1 vol. Tris- HCl-buffered phenol, 2 vols chloroform–isoamyl alcohol (24:1), and then precipitated with 2 vols ethanol. Viral DNA was digested with restriction endonucleases and fractionated on 0.8% agarose–TBE gels. Southern blot analysis was performed on nitrocellulose using nick-translated probes generated as described above.

Sequencing. G22 sequence was obtained on both strands using the dideoxynucleotide sequencing method. M13 vectors were used to generate ssDNA templates which were then sequenced with the Sequenase version 2.0 DNA sequencing kit (USB). Primers for sequencing were synthesized on a 381A DNA synthesizer (Applied Biosystems). Sequence from plasmids was obtained with the fmol DNA sequencing system (Promega) using protocols supplied with the kit. [α-32p]dATP was supplied by NEN. Sequence analysis was done using the MacVector program (IBI).

Primer extension mapping of early and late transcripts. Primer extension reactions were performed using the method of Crawford & Miller (1988). Total RNA was isolated from *L. dispar* cells infected with LdMNPV 5–6 at 2, 7 and 72 h p.i. An 18 base primer that is complementary to the sequence shown in Fig. 3 (positions 297–314) was used in the reactions after being end-labelled with [γ-32p]ATP (NEN). The primer was extended using Moloney murine leukaemia virus (M-MLV) reverse transcriptase. Primer extension products were fractionated on 6% polyacrylamide–8 M-urea gels and visualized by autoradiography.

Ribonuclease protection assay (RPA) mapping of early transcripts. Assays were performed with the RPA II ribonuclease protection assay kit (Promega) using the supplied protocols. The probe was generated as follows: a 1-2 kbp BamHI fragment (152–164 kbp on the viral genome) that contained the G22 gene was subcloned into the plasmid pBluescript SK(+) (Stratagene) to generate pDB120. This fragment contains two internal StyI sites (at nucleotide positions 430 and 1018, see Fig. 3). Digestion of pDB120 with StyI, end-filling the overhangs with Sequenase (USB), and religation, resulted in a subclone, pDB162, which contains a truncated form of the G22 gene. A 32P-labelled RNA probe complementary to the G22 transcript was generated from pDB162 using T3 polymerase (Promega) and [α-32p]CTP (NEN). This probe is 500 nucleotides in length with approximately 450 bases of viral sequence and 50 bases of vector sequence. The probe was hybridized for 20 h at 45 °C with 5 μg of mRNA isolated at 7 h p.i. from uninfectected or infected cells. After treatment with RNase A and RNase T1, the protected fragments were fractionated on 6% polyacrylamide–8 M-urea gels and visualized by autoradiography. A DNA sequencing ladder was used to determine the size of the protected fragment.

In vitro transcription and translation of G22. G22 was expressed from pDB120 using the TNT coupled reticulocyte lysate system and T7 RNA polymerase (Promega) using the directions provided with the kit. The expressed protein was labelled by the addition of [35S]methionine (NEN). Reaction products were analysed by SDS-PAGE and autoradiography.

Results and Discussion

Identification and transcriptional expression analysis of G22

A cDNA library generated with poly(A)+ RNA from *L. dispar* cells infected with LdMNPV 5–6 was probed with the *EcoRV-G* fragment. Early viral transcripts had previously been mapped to this genomic region (Slavicek, 1991). One cDNA clone (λ7–4) which hybridized to this probe was identified and contained an insert of approximately 750 bp (data not shown).
The cDNA insert was used as a probe on Northern blots to identify the size of the transcript being expressed. The probe hybridized to a 0.85 kb transcript (Fig. 1). This gene was subsequently designated G22, since the gene is present on the EcoRV-G fragment and is predicted to encode a protein with an Mr of 22000 (see below). The G22 transcript can be detected throughout the time course of infection (Fig. 1 a), beginning immediately after the 1 h period of virus adsorption (Fig. 1 b). The level of transcription of G22 increased from 4 to 8 h p.i. but declined thereafter in virus-infected cells (Fig. 1 c). This enhancement of transcription appears to be dependent on the expression of other viral proteins (see inhibitor study below). A G22 strand-specific probe was also used to confirm that the 0.85 kb transcript corresponded to the G22 gene. The transcription pattern was identical to the pattern seen using the cDNA probe (data not shown).

Genomic mapping and sequencing of G22

G22 was further localized to the 1.1 kbp EcoRV-BamHI fragment located at approximately 15.3–16.4 kbp (9.3–10.0 m.u.) on the viral genome (data not shown). The restriction map of the 1.1 kbp EcoRV-BamHI fragment is shown in Fig. 2(a). The G22 cDNA was subcloned into pBluescript and the sequence of the 3' end of the cDNA was determined. Comparison of this 3' cDNA sequence with the viral genome sequence indicated that G22 is transcribed from left to right with
respect to the viral genome. Computer analysis of the 1.1 kbp EcoRV–BamHI fragment revealed several ORFs that may encode proteins, the largest (572 bp) being in frame 3 (Fig. 2b).

Characteristics of the nucleotide sequence

The nucleotide sequence of the 1048 bp EcoRV–BamHI fragment and the predicted amino acid sequence of G22 are presented in Fig. 3. The G22 ORF begins at position 258 and ends at position 831. This gene encodes a 191 amino acid protein with a predicted Mr of 22000. A region upstream of G22 is approximately 83% GC-rich (residues 70–202). Closer examination of the nucleotide sequence reveals that there are two types of identical direct repeats present within this region: 11 bp repeats beginning at residues 133 and 183, and 13 bp repeats beginning at residues 89 and 118. In addition, there are several areas composed almost entirely of GC residues which contain the sequence GCGCG (starting at residues 76, 89, 105, 118, 166 and 213). GC-rich domains with this core sequence have been identified upstream of early genes in AcMNPV and may function as promoter regulatory elements (Dickson & Friesen, 1991).

A TATA-like promoter was not identified upstream of G22. The early transcriptional start sites are at residues 231 and 232, as determined by primer extension mapping (see below). These start sites are within a region (GTCAGTCT) that shows homology to the transcriptional start sites (with the consensus sequence NTCAGTYN) in *Drosophila melanogaster* retrotransposon and developmental genes and in the developmentally controlled mouse terminal deoxynucleotidyltransferase (*Tdt*) gene (Table 1; Jarrell & Meselson, 1991). These promoters represent a subset of RNA polymerase II promoters that lack TATA motifs. Another LdMNPV early gene, *vPK*, also lacks a TATA box and has early start sites within a similar sequence, CTCAATTGC (Bischoff & Slavicek, 1994). Several AcMNPV early genes that also lack TATA boxes have been identified, such as *lef-1* (Passarelli & Miller, 1993a), *lef-3* (Li et al., 1993), *lef-6* (Passarelli & Miller, 1994) and *cg30* (Thiem & Miller, 1989). Of these genes, only the start site sequence of *lef-6* (TTACAGTGT) resembles those seen upstream of LdMNPV early genes. Several CGATAA sequences are located upstream of the G22 transcriptional start sites. These sequences are similar to the GATA consensus sequence (A/T)GATA(G/A) that is recognized by cellular transcription factors (Evans et al., 1988). GATA motifs have been identified upstream of the AcMNPV early genes gp64 (Kogan & Blissard, 1994), PE38 (Krappa et al., 1992) and ME53 (Knebel-Mörsdorf et al., 1993). The consensus late promoter sequence, ATAAG (Rohrmann, 1986), is present at several locations upstream of the G22 start codon.
EcoRV

1. GA TAT CTT ATC GAA CCA TCG AGC CCG CTC CTC GTC GCG TCT GCC ATE AGC CCG CNT ATC

60. GAT AGC AST AGC CGC GSC GCG AST AGC CTC CTC GTC GCG TCT GCC ATE AGC CCG CNT ATC

120. GGC CGG CCC CCG GCC GCG CCG CCG CCG CCG CCG TCC GCC TCC ATT GCC CGG GCA TCG

180. CCG CCC GCC GCG GCA CCG CTG CCA CGA TAA CCA AGG CGG GCC TCG ATC GAC CTT CAG TCT

240. TCA GAT ATT ACA TTT AGA ATG TCG TTA ACG CCA ACC AAC CAC GTC GCC CAA GAT GTC CTA

300. CTG AGC GCC TTC GAC GCC GGC TCC TTC GTC GTC ACC AAC ACG GTC GAC GCC TCG TTC ATT ATG

360. TTC AAC GAT AAT TTT AGG GAC GTA GAC TAC GCA GAT TGA ATA GTC AGC GAG TCG TCC

420. GAC TCG AGG ACC AAG GTC CCC AAA GAC TCG TGT GTC AAG TAC CAG TAC ATG TGT GCG

480. H D K L Y G T R D F L K R F Y G V L C K Y Q Y M C V

540. CCG GCC TGG AGC GGT AGC GGC GCC CCG CGC GAC TGT GTC TCA GCG TAC GCC GCA

600. GCC CGG TGG AAC GAT ATC GTC GCC GTC GAC TTC TCC GTG ACC AAG TAT TGT TCC TAT TAC

660. TTT CCT GCC GAG CAT CTG TCT GTG TCC ATG AGC GTG ACC ACC ACG TAT TGT GCC TAT TAC

720. GAC TGG TCG GCC AAC ACC ATG TCG ACG GTG TCA GCC GCC GAC AAG GAT TGG GCC AAC AAA

780. TCC AAG TCC GCC GGC TCC GTG AAT AAA ACT AGC AAC ATG ATT GTA TGT AAT TAA TAA

840. GAA TTA GAT ATT ACA TTG AGA ATG TCG TTA ACG CGA ACC AAT CAC GTG GCC CAA GTG GTG

900. M S L T R T N H V A Q V V L

960. CTG ACG CGC TTC GAC GGG CGC TTC TCC GTG ACC AAG ACG GTG AAC CCG TGC CTG TTC ATG

BamHI

1020. TTG GCG GCG GAC GAG CGG GAT TAG GAT CC

Fig. 3. Nucleotide sequence of the 11 kbp EcoRV–BamHI fragment and the predicted amino acid sequence of G22. GC-rich direct repeats are indicated by single (13 bp) and double (11 bp) underlines. Other GC-rich areas that contain the core sequence GCGCG are boxed. Early transcriptional start sites are indicated by arrows. Potential late promoter sequences are shaded. Potential polyadenylation signals are presented in bold type. The position of the poly(A) tail is indicated in bold type with an asterisk.

Table 1. Comparison of early LdMNPV promoters with the consensus start site for promoters lacking TATA boxes

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Start site</th>
</tr>
</thead>
<tbody>
<tr>
<td>LdMNPV G22</td>
<td>GTCAAGTCT</td>
</tr>
<tr>
<td>LdMNPV vPK</td>
<td>CTCATTGCC</td>
</tr>
<tr>
<td>AcMNPV lef-6</td>
<td>TCCAGTGT</td>
</tr>
<tr>
<td>Mouse Tdt</td>
<td>CTCAATTCT</td>
</tr>
<tr>
<td>gypsy (mdg4)</td>
<td>TCCAGTTC</td>
</tr>
<tr>
<td>Antennapedia</td>
<td>TGCAAGTCT</td>
</tr>
<tr>
<td>engrailed</td>
<td>TGCAACTA</td>
</tr>
<tr>
<td>Drosophila consensus</td>
<td>TGCAACTYN</td>
</tr>
</tbody>
</table>

* The Table shows nucleotide comparisons of the G22 start site with those of LdMNPV vPK (Bischoff & Slavicek, 1994), AcMNPV lef-6 (Passarelli & Miller, 1994), mouse Tdt (Smale & Baltimore, 1989), Drosophila gypsy retrotransposon mdg4 (Jarrell & Meselson, 1991), Drosophila developmental genes Antennapedia (Perkins et al., 1988) and engrailed (Soeller et al., 1988), and with the Drosophila consensus start site sequence (Jarrell & Meselson, 1991).

† Initiation nucleotides are underlined.

Characteristics of the protein sequence

G22 could encode a 191 amino acid protein with a calculated M_r of 22,000. The predicted amino acid sequence of G22 was compared with other proteins in GenBank at the National Center for Biotechnology Information (NCBI) using the BLAST network service (Altschul et al., 1990). This search revealed that G22 did not exhibit significant homology to any other known protein, nor were any known sequence motifs identified.
within the predicted G22 amino acid sequence. Recently, the complete nucleotide sequence of the AcMNPV has been reported (Ayres et al., 1994). Although several genes that are present in both LdMNPV and AcMNPV have been identified [polyhedrin (Smith et al., 1988), p39 (Bjornson & Rohrmann, 1992b), vPK (Bischoff & Slavicek, 1994), egt (Riegel et al., 1994) and DNA polymerase (Bjornson et al., 1992)], there is no G22 gene homologue present in AcMNPV.

Mapping of the 5' and 3' ends of the G22 transcript

Primer extension reactions were carried out using total RNA isolated from L. dispar cells at 2, 7 and 72 h p.i. in order to map the 5' ends of G22 transcripts. At 2 and 7 h p.i. transcription initiates at two residues, positioned 26 and 27 bp upstream of the G22 start codon. At a later time-point (72 h) only one start site for gene transcription was detected, 26 bp upstream of the G22 start codon (Fig. 4). Transcriptional start sites that originated within the consensus late promoter sequences were not detected.

RPAs were also performed to map the 5' end of the G22 transcript. A protected fragment of 204 bp was detected using mRNA from infected cells at 7 h p.i., but not from mRNA isolated from uninfected cells (data not shown). This would correspond to an mRNA start site 28 bp upstream of the G22 start codon (Fig. 3). This result is in close agreement with the primer extension results and suggests that the G22 transcript is not spliced.

The 3' end of the G22 transcript was mapped by sequencing the 27-4 cDNA insert (data not shown). The poly(A) tail begins at nucleotide position 975 (see Fig. 3), 13 bp downstream of the ATTAAA polyadenylation sequence. The size of the transcript predicted from the DNA sequence is 815 or 816 nt [not including the poly(A) tail], in close agreement with the approximately 0.85 kb G22 transcript seen in the temporal expression experiments.

Temporal expression of G22 in the presence of cycloheximide

Recent results indicate that although all early genes appear to be transcribed by the host RNA polymerase II (Fuchs et al., 1983; Huh & Weaver, 1990), differences in the level of transcription of early genes are seen due to regulation of viral gene expression by baculoviral trans-regulator proteins (Glocker et al., 1992; Kovacs et al., 1991; Passarelli & Miller, 1993b; Carson et al., 1991). To determine whether viral protein synthesis affected transcription from the G22 promoter, cells were infected in the presence of the protein synthesis inhibitor cycloheximide (Rice & Miller, 1986). The 0.85 kb G22 transcript was detected at all time-points in the presence of cycloheximide (Fig. 5b). The amount of G22 transcript present at 2 h p.i. was approximately the same, with or without cycloheximide. In contrast, significantly more G22 gene transcript was present in the cells without cycloheximide (Fig. 5a) than in the cells with cycloheximide at 4 and 6 h p.i. Higher levels of transcription in the absence of cycloheximide may be due to trans-activation of the G22 promoter by other viral proteins or by G22 itself.

In vitro transcription and translation of G22

To determine if G22 encoded a protein, G22 was expressed from plasmid pDB120. A band of apparent M_r 24000 was seen after SDS-PAGE and autoradiography (Fig. 6). The M_r of the G22 protein is predicted from the
nucleotide sequence to be 22000. No radiolabelled band was detected from the parent plasmid.

The G22 transcription initiation site exhibits sequence homology to initiator elements

G22 is the second early gene identified in LdMNPV that contains a start site sequence which exhibits homology to an RNA polymerase II promoter element, termed the initiator, present in the mouse lymphocyte-specific gene Tdt (Smale & Baltimore, 1989). Several Drosophila TATA-less retrotransposons and developmental genes such as gypsy, B104, 297, Antennapedia and engrailed (Jarrell & Meselson, 1991, and references therein) also contain a sequence that shows homology with the Tdt gene initiator. Characteristics of this type of initiator promoter include a consensus promoter sequence, the lack of a TATA motif, and the presence of sequences downstream from the origin of transcription that are necessary for efficient expression. Both the gypsy retrotransposon and the Tdt gene initiator sequences were shown to be functional since alterations of this sequence resulted in the loss of transcription initiation (Jarrell & Meselson, 1991; Smale & Baltimore, 1989). Recently, it has been shown that the transcriptional start site of the AcMNPV ie-1 gene (TTCAGTTG) can function as an initiator element (Pullen & Friesen, 1995). Although the IE-1 promoter region also contains a TATA box, accurate transcription was still detected when the TATA box was deleted. Studies are in progress to determine if the sequence upstream of the LdMNPV G22 gene with homology to the initiator element functions as an initiator transcription control element. In addition, attempts are in progress to delete the gene in order to investigate the role of G22 in virus replication.

References

(Received 16 January 1995; Accepted 1 August 1995)