Identification and sequence analysis of the homologues of the herpes simplex virus type 1 glycoprotein H in Marek's disease virus and the herpesvirus of turkeys

Simon D. Scott,1* Graham D. Smith,1 Norman L. J. Ross1 and Matthew M. Binns2

1 AFRC Institute for Animal Health, Houghton Laboratory, Houghton, Huntingdon, Cambridgeshire PE17 2DA and 2 Animal Health Trust, Lanwades Park, Kennett, Newmarket, Suffolk CB8 7PN, U.K.

The glycoprotein H (gH) genes of two avian herpesviruses, Marek's disease virus and the herpesvirus of turkeys, have been cloned and sequenced and the coding regions found to be of 2439 and 2424 nucleotides respectively. The predicted primary polypeptide products of these open reading frames are 813 and 808 amino acids and correspond to Mr's of 90 800 and 91 100. Both amino acid sequences exhibit characteristic glycoprotein features such as hydrophobic signal and anchor sequences and potential sites for N-linked glycosylation. Polypeptide sequence comparison to the other eight available gH sequences revealed more similarity to the alphaherpesvirus subgroup than to either beta- or gammaherpesviruses.

Marek's disease viruses (MDVs) are highly cell-associated herpesviruses of gallinaceous fowl. Members of the group, though closely related serologically, display degrees of pathogenicity ranging from subclinical infections to the neuropathic and lymphoproliferative conditions of chickens with classical Marek's disease. The disease has been effectively controlled for more than a decade using a live vaccine based on the non-pathogenic serotype 3 MDV, the herpesvirus of turkeys (HVT). In recent years, however, the world-wide emergence of 'highly oncogenic' strains of MDV amongst vaccinated flocks (Witter et al., 1980; Eidson et al., 1981; Powell & Lombardini, 1986), has led to a renewed interest in vaccine development. Increased vaccine efficacy can be attained using a multivalent system combining HVT with the naturally non-pathogenic serotype 2 viruses or laboratory-attenuated serotype 1 MDV, which suggests that viruses from the different serotypes possess different protective antigenic epitopes. Additionally, purified glycoproteins from MDV-infected cells have been shown to induce neutralizing antibody and to protect partially against the disease (Wyn-Jones & Kaaden, 1979). Consequently, the analysis of MDV glycoprotein sequences may prove invaluable in the determination of such epitopes, with a view to the production of synthetic peptide or recombinant vaccines.

Herpesviruses encode a number of glycoproteins, of which only glycoproteins B (gB) and H (gH) are conserved in all three subgroups. In addition, both these proteins appear to be essential for virus infectivity (Cai et al., 1988; Desai et al., 1988; Forrester et al., 1991). gH was first identified in herpes simplex virus type 1 (HSV-1), following neutralization and immunoprecipitation studies with a series of monoclonal antibodies (MAbs) (Buckmaster et al., 1984) and its sequence was presented by Gompels & Minson (1986) and McGeoch & Davison (1986). Furthermore, gH has been implicated in the cell-to-cell spread of virus during in vitro infections with HSV-1 (Showalter et al., 1981; Buckmaster et al., 1984; Gompels & Minson, 1986; Gompels et al., 1991) and varicella-zoster virus (VZV) (Keller et al., 1987). In addition, antibodies raised against the HSV-1, VZV, human cytomegalovirus (HCMV) and Epstein–Barr virus (EBV) gHs have been shown to be strongly neutralizing (Showalter et al., 1981; Keller et al., 1984; Rasmussen et al., 1984; Strue et al., 1982). The inhibition of virus transfer between cells has also been noted in the presence of these antibodies for HSV-1, VZV and EBV (Desai et al., 1988; Keller et al., 1987; Miller & Hutt-Fletcher, 1988).

We have previously reported the full nucleotide sequences of homologues of four glycoprotein genes, gB, gC, gD and gE (Ross et al., 1989, 1991; Binns & Ross, 1989), in a highly oncogenic strain of MDV, RB1B (Schat et al., 1982). The sequence of the gC gene from the vaccine strain of HVT (FC126) has also been published recently, revealing an overall identity of 74.6% with the MDV sequence (Coussens & Velicer, 1988; Bandypadhyay, 1989). This comparison also revealed regions of dissimilarity between the polypeptides, however, with...
The smaller of these corresponded to the thymidine al., (Stratagene) nested deletion clones of a 1.6kbp fragment and was sequenced from pBluescript KS + et al.

The full sequences of the MDV and HVT gH genes and itself, to provide data for the 500 bp downstream of the their predicted products are shown in Fig. 2.

The mapping of serotype 1 MDV gH gene sequences to a 3-5 kb BamHI fragment is described in Buckmaster et al. (1988). There are, however, two BamHI fragments of this size in the MDV genome collinear with the HVT gH gene, denoted BamHI-Ks and -Kg (Fukuchi et al., 1984). Sequencing of BamHI-Ks revealed no gH gene sequences (Ross et al., 1989). Thus the 3.5 kb BamHI fragment containing gH and TK gene sequences (Scott et al., 1989) is -Ks. The remaining 3'-terminal three-quarters of the gH gene lies in the adjacent 8-9 kb BamHI-F fragment and was sequenced from pBluescript KS+ (Stratagene) nested deletion clones of a 1-6 kb BamHI–EcoRI subclone of BamHI-F. Again, primer extension sequencing, this time within a cloned 2.2 kb EcoRV fragment, was used to verify the BamHI junction. The full sequences of the MDV and HVT gH genes and their predicted products are shown in Fig. 2.

Further primer extension sequencing of BamHI-F itself, to provide data for the 500 bp downstream of the MDV gH gene, revealed no direct repeat elements or putative replication origin sequences, as has been found in this position for equine herpesvirus (EHV)-1 and -4 and pseudorabies virus (PRV) (Robertson et al., 1991; Nicolson et al., 1990; Klupp & Mettenleiter, 1991). The repeats in PRV are located 440 bp downstream of the gH stop codon and thus our results do not preclude the existence of an equivalent region further downstream in MDV. Indeed, Fukuchi et al. (1984) noted the presence of large direct repeats in the BamHI-F fragment, which we now know to contain the 3'-terminal sequences of gH. It is also notable that in VZV and HSV-1, which do not possess an origin sequence in this region, the next gene is found within 200 bp of the gH stop codon. No such gene homologue was identified from the MDV sequence data produced.

Examination of the MDV and HVT gH amino acid sequences reveals 10 potential asparagine-linked glycosylation sites in the former and nine in the latter (Marshall, 1972; Kornfield & Kornfield, 1985). These are shown in bold in Fig. 2. This compares to 11 such sites in the EBV and EHV-1 and -4 gHs, eight in herpesvirus saimiri (HVS), seven in HSV-1, six in HCMV, five in EBV and three in PRV (Keller et al., 1987; Robertson et al., 1991; Nicolson et al., 1990; Gompels et al., 1988; Gompels & Minson, 1986; McGeoch & Davison, 1986; Cranage et al., 1988; Baer et al., 1984; Klupp & Mettenleiter, 1991). Only one of these sites shows conservation of position in all eight gH sequences. Gompels et al. (1988) noted that all five of the EBV gH glycosylation sites are conserved in the same position as in HVS. Indeed, three HVS sites are also conserved in HCMV. In contrast, the majority of the gH glycosylation sites in the alphaherpesviruses and MDVs are in different positions with respect to those in the EBV, HVS and HCMV polypeptides, both groups displaying higher conservation amongst themselves.

Assuming that each glycan contributes approximately 2500 to the M, of a glycosylated protein (Klenk & Rott, 1980), the M, of the primary glycosylated product of the MDV and HVT gH genes would be 115800 and 113600 respectively.

When hydropathy plots of MDV, HVT and HSV-1 gH polypeptides are produced using the HYDROPATH computer program of Staden (1984) (data not shown), a number of distinct hydrophobic regions can be seen, notably at both the N and C termini (see Fig. 2). These features are characteristic of glycoproteins and are likely to represent signal and anchor sequences involved in the transport to and subsequent insertion into cell membranes respectively. Other hydrophobic stretches within the gH sequences contain charged amino acids and are thus unlikely to be membrane-spanning. Some of these regions, however, may be located in the hydrophobic
Table 1. Similarity scores obtained by comparison of predicted amino acid sequences of the MDV and HVT gHs and those of eight other herpesviruses*

<table>
<thead>
<tr>
<th>Virus and subfamily</th>
<th>MDV (γ2)</th>
<th>HVT (γ2)</th>
<th>VZV (σ2)</th>
<th>EHV-1 (σ1)</th>
<th>EHV-4 (σ1)</th>
<th>HSV-1 (σ1)</th>
<th>PRV (σ1)</th>
<th>HVS (σ1)</th>
<th>EBV (γ1)</th>
<th>HCMV (β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDV (γ2)</td>
<td>3917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVT (γ2)</td>
<td>2443</td>
<td>3959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZV (σ2)</td>
<td>707</td>
<td>707</td>
<td>4303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHV-1 (σ1)</td>
<td>629</td>
<td>662</td>
<td>1161</td>
<td>4113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHV-4 (σ1)</td>
<td>666</td>
<td>635</td>
<td>1188</td>
<td>3651</td>
<td>4134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV-1 (σ1)</td>
<td>370</td>
<td>418</td>
<td>705</td>
<td>428</td>
<td>428</td>
<td>4126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRV (σ1)</td>
<td>327</td>
<td>307</td>
<td>391</td>
<td>403</td>
<td>406</td>
<td>331</td>
<td>3410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVS (σ1)</td>
<td>152</td>
<td>170</td>
<td>149</td>
<td>135</td>
<td>139</td>
<td>111</td>
<td>121</td>
<td>3855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBV (γ1)</td>
<td>160</td>
<td>136</td>
<td>157</td>
<td>82</td>
<td>92</td>
<td>155</td>
<td>113</td>
<td>850</td>
<td>3687</td>
<td></td>
</tr>
<tr>
<td>HCMV (β)</td>
<td>115</td>
<td>98</td>
<td>56</td>
<td>123</td>
<td>136</td>
<td>98</td>
<td>160</td>
<td>317</td>
<td>212</td>
<td>3717</td>
</tr>
</tbody>
</table>

*Scores given refer to optimized similarity scores derived from amino acid sequence comparisons using the FASTP program of Lipman & Pearson (1985).

The two genes, at 2439 and 2424 bp respectively for MDV and HVT, are comparable in length with other gH sequences, which have a size range of 2118 to 2565 bp, though most notably with the larger, alphaherpesvirus gH homologues.

Results of the computer comparison between the gH sequences of the two Marek's disease viruses themselves and the other available gH sequences are shown in Table 1, with higher scores indicating a closer sequence similarity. As expected, MDV and HVT display the highest identity, at 55.9 %. There are, however, regions of dissimilarity of up to 14 amino acids (see Fig. 2) which may represent serotype-specific epitopes. The raising of antipeptide antisera for subsequent Western blotting experiments would be a suitable route to determine this (see Ross et al., 1989). Comparisons with the other herpesvirus gH polypeptides reveal that VZV and EHV-1 and -4 exhibit the most sequence similarity, at 23 to 25 % identity. This is not thought to indicate a particularly close relationship to the MDVs, but rather a central position in the evolutionary tree, as evidenced by their sequence similarities to the other alphaherpesviruses.

In RNA mapping studies with MDV two transcripts of size 2·4 to 2·6 and 3·6 to 3·7 kb have been detected by probing Northern blots with cloned BamHI-F and -K₂ fragments (Schat et al., 1989). Because the ORF coding for gH is the only one spanning these two genomic fragments it is likely that one of these RNAs is the gH message. Furthermore, it is plausible that the larger RNA species may be a bicistronic TK/gH message, as has been suggested for the corresponding PRV transcript (Klupp & Mettenleiter, 1991).

The Mₛ of the polypeptides following glycosylation and signal sequence cleavage at the predicted sites would be about 114000 and 111500 in MDV and HVT respectively. Unfortunately, these products are likely to comigrate with the viral gB in SDS–polyacrylamide gels [the MDV gB having been reported by Ross et al. (1989) as having an Mₛ of 115000], as was noted for their HSV-1 counterpart (Buckmaster et al., 1984). Thus, gH-specific antisera would be needed to distinguish between these two glycoproteins using Western blotting. Again, antipeptide antisera may prove particularly useful in this regard.

The biological role of gH appears to be in virus entry into host cells and its subsequent cell-to-cell spread. Studies on a temperature-sensitive mutant of HSV-1, tsQ26 (Chu et al., 1979; Desai et al., 1988), revealed that a point mutation at a position corresponding to 828 in Fig. 2, causing an amino acid substitution of a cysteine (C) for a tryptophan (W), produced a non-infectious virus with no gH expressed on its virion surface when incubated at the non-permissive temperature. Interestingly, all wild-type alphaherpesviruses carry the tryptophan (and adjacent proline) residue at this position. In contrast, despite MDVs displaying obvious conservation with the alphaherpesviruses in this region of gH (including the possession of the aforementioned proline), MDV and HVT have isoleucine and valine at this position, respectively. Whether this has any bearing on the growth characteristics of these viruses, their tropism for avian rather than mammalian cells or their particular cell-associated nature, for example, is not known. Specific site-directed mutagenesis of these MDV gH genes may help to elucidate this. Furthermore, the study of neutralizing MAb escape mutants of the MDV or HVT gHs, should any be isolated, would provide additional insight into the relevance of such differences.

Complement-independent neutralizing antibodies have been raised against gH that inhibit plaque formation in vitro (Buckmaster et al., 1984; Gompels & Minson, 1986; Keller et al., 1987) and protect experimental mice from further virus challenge following
passive immunization (Forrester et al., 1991). gH is thus a promising target for inclusion in anti-herpesvirus vaccine development. However, expression of the HSV-1 gH in a recombinant vaccinia virus (Blacklaws et al., 1990; Forrester et al., 1991) or COS cell system (Gompels & Minson, 1989) does not result in the wild-type protein being produced. Consequently, vaccinia virus recombinants were unable to elicit neutralizing antibody let alone protection (Blacklaws et al., 1990; Forrester et al., 1991). Additionally, recent work on HSV-1 by Hutchinson et al. (1992) demonstrated the need for the presence of another glycoprotein, named gL, for the normal processing and transportation of gH. This glycoprotein is encoded by the HSV-1 UL1 gene, homologues of which have not, as yet, been identified in MDVs. Consequently, it may be important to present gH in a more native context in order that the authentic protein be expressed. An obvious choice of vector would be another herpesvirus. For MDV, expression of the gH gene in HVT would seem the most appropriate choice, mammalian virus recombinant vaccines to the control of MDVs. Consequently, it may be important to present gH in a more native context in order that the authentic protein be expressed. An obvious choice of vector would be another herpesvirus. For MDV, expression of the gH gene in HVT would seem the most appropriate choice, and with the additional knowledge of gene sequence and arrangement in this virus group we may soon be able to apply the technology utilized in the production of mammalian virus recombinant vaccines to the control of avian disease.

The authors would like to thank Bridgette Britton and Joan Simpson for their excellent technical help. Part of this work was funded by the EEC Bridge Programme (Contract BIOTCT90-0173).

References


(Received 2 October 1992; Accepted 14 January 1993)