De novo generation of cymbidium ringspot virus defective interfering RNA

József Burgyan,† Luisa Rubino and Marcello Russo*

Dipartimento di Protezione delle Piante dalle Malattie, Università degli Studi and Centro di Studio del CNR sui Virus e le Virosi delle Colture Mediterranee, Via Amendola 165/A, 70126 Bari, Italy

Nicotiana clevelandii plants were inoculated with cymbidium ringspot tombusvirus RNA synthesized in vitro, after which further passages were made by sap inoculation. During the third passage, low Mr RNA species appeared which had the characteristics of deletion mutants of genomic RNA. Sequence analysis of several of these defective interfering RNAs suggested a possible evolution of smaller from larger molecules. Computer-generated secondary structures of sequences surrounding recombination sites were extensive and stable and these sites occurred in interior or hairpin loops, thus providing a possible explanation for discontinuous RNA transcription and the formation of deletions in genomic RNA.

Introduction

Repeated serial high multiplicity passages of several animal viruses can lead to the generation of defective interfering (DI) particles which interfere with the replication of the helper genome and thereby diminish cytopathic effects, leading to the establishment of persistent infections (Perrault, 1981; Schlesinger, 1988).

Among plant viruses, two tombusviruses [petunia asteroid mosaic virus, also referred to as the cherry strain of tomato bushy stunt virus (TBSV) (Hillman et al., 1987), and cymbidium ringspot virus (CyRSV) (Burgyan et al., 1989)] and one carmovirus [turnip crinkle virus (TCV) (Li et al., 1989)] have been shown to support the replication of DI RNA. Attempts to determine the origin of DI RNAs have been made by making high multiplicity passages of a DI RNA-free isolate of TBSV cherry (Morris et al., 1988) or by inoculating plants with purified genomic RNA from CyRSV (Burgyan et al., 1989). The results of these experiments provide circumstantial evidence for de novo generation of DI RNA from the parental virus genome. With TCV, the use of cloned inocula provided experimental evidence for de novo generation (Li et al., 1989).

The larger of these RNAs encodes the capsid protein (Mr 41000; 41K); the smaller has two nested genes which encode two polypeptides with predicted M_r of 22K and 19K (Grieco et al., 1989b). CyRSV also supports the replication of other linear RNAs, either completely derived from genomic RNA (DI RNA; Burgyan et al., 1989) or essentially unrelated to it (satellite RNA; Gallitelli & Hull, 1985). Molecules of both types have been cloned and sequenced (Rubino et al., 1990).

The availability of full-length cDNA clones of CyRSV genomic RNA, from which infectious RNA can be synthesized (Burgyan et al., 1990), prompted us to reinvestigate the origin of CyRSV DI RNA. The results of these studies, reported in the present paper, show that the generation of DI RNA does not require the presence of DI RNA-length template but is probably generated from genome-length RNA by a series of progressive deletions.

Methods

Virus RNA and plant inoculation. Infectious CyRSV RNA was synthesized in vitro from full-length cDNA clones and inoculated into Nicotiana clevelandii plants as previously described (Burgyan et al., 1990). Infected tissues were ground in approximately the same volume of high pH inoculation buffer containing bentonite (Heaton et al., 1989) between 8 and 10 days later and inoculated into N. clevelandii (second passage). Two further subinoculations were done in the same way.

Full-length cloning and sequencing of DI RNAs. Total RNA was extracted from one leaf of infected plants and electrophoresed in 1.2% low melting point agarose (LMP; BRL) as described (Burgyan & Russo, 1988; Russo et al., 1988). RNA species migrating in positions expected for molecules approximately 400 to 700 nt long were eluted
These RNAs were denatured with 1 μl 100 mM-methylmercuric hydroxide, incubated for 10 min at room temperature and then mixed with 2 μl 700 mM-mercaptoethanol and 40 units RNase inhibitor (HPR; Amersham); cloning was essentially as described by Ahlquist & Janda (1984). First strand synthesis was primed with the oligonucleotide 5’ CCCCTGCATTGCTGCAA 3’, which is complementary to the last 17 nucleotides of the CyRSV genomic RNA sequence; second strand synthesis was primed with the oligonucleotide 5’ GGAATTCCTCCAGGACA 3’, which is homologous to the first 17 nucleotides of CyRSV RNA. (The first base is unknown but it is assumed to be G; Burgyan et al., 1990.) Another strategy, which was used to ensure that scarce DI RNA species did not escape detection, was to use 10 μg total RNA extract as the template for the first strand synthesis and then to amplify cDNA by 35 cycles of the polymerase chain reaction (PCR) with the two primers described before and AmpliTaq polymerase (GeneAmp DNA Amplification Reagent Kit; Perkin Elmer Cetus). Melting, annealing and polymerization times and temperatures were 1 min at 94 °C, 1 min at 37 °C and 3 min at 72 °C, respectively. The resulting dsDNA was cloned in pUC18 digested with Smal.

Recombinant plasmids were extracted by the boiling method (Maniatis et al., 1982) and the sizes of the inserts were estimated after restriction with HindIII and EcoRI. For sequencing, plasmids were extracted according to the method of Hattori & Sakaki (1986) and sequenced with T7 DNA polymerase (Sequenase; U.S. Biochemicals). Sequence data were analysed with the DNA Strider program (Marck, 1988); secondary structures were constructed according to the program of Zucker & Stiegler (1981).

Northern blots. RNA samples were denatured with formamide and formaldehyde and electrophoresed in 1-2% agarose gels in MOPS buffer (20 mM-MOPS, 5 mM-sodium acetate, 1 mM-EDTA) containing 2-2 mM-formaldehyde (Maniatis et al., 1982) and blotted onto Hybond membranes (Amersham). Blots were hybridized with a nick-translated DI RNA clone designated pDI4 (Rubino et al., 1990).

Results

De novo generation of small RNA species

Northern blots of RNA preparations from two N. clevelandii plants inoculated with in vitro transcripts of CyRSV RNA showed the presence of genomic and subgenomic RNAs but not of low M, RNA species (Fig. 1, lane 3), as found previously by Burgyan et al. (1990). The same pattern was obtained with RNA extracts from sap inoculated plants at the second passage (not shown). However, RNA preparations extracted from plants infected at the third passage contained, in addition to genomic and subgenomic RNAs, a number of RNA species migrating in the range of approximately 400 to 700 nt (Fig. 1, lanes 1 and 2). In samples collected a day later from younger leaves of the same plant, two different electrophoretic patterns were found (Fig. 1, lanes 4 and 5). The numbers and relative quantities of RNA species smaller than subgenomic RNA 2 found in different leaf samples varied. Nevertheless these small RNAs were present in all samples from the third passage onwards.

Fig. 1. Northern blots of RNA preparations from a plant infected with CyRSV RNA in vitro transcripts (lane 3) and plants inoculated with sap at the third passage, 7 (lanes 1 and 2) and 8 (lanes 4 and 5) days after inoculation. Lane 6 shows an RNA preparation containing a DI RNA (DI-499) of 499 nt previously described (Rubino et al., 1990). G (4733 nt), sg1 (2118 nt) and sg2 (936 nt) are positions of CyRSV genomic and subgenomic RNAs, respectively, in lane 3.

Fig. 2. Nucleotide sequence of DI RNAs generated de novo. The complete sequence is reported for DI-13. In the other DI RNAs, dashed lines indicate conserved nucleotides; stars are deletions; lower-case letters are insertions in positions indicated by dots in DI-13; upper case letters are substitutions. Numbers marked indicate the large deletions in genomic RNA.
De novo generation of CyRSV DI RNA

A B C

Fig. 3. Conserved sequence blocks in DI RNAs generated de novo. Numbers above shaded areas are nucleotides present in conserved blocks; numbers below lines are deletions in genomic RNA.

Cloning and sequencing of DI RNAs

The RNA preparations shown in Fig. 1 (lanes 1, 2, 4 and 5) were used for cloning. Clones obtained by two procedures (cloning from RNA eluted from gels and amplification by PCR from cDNA made on unfractionated RNA templates) had inserts with sizes ranging from about 400 bp to 700 bp. Sixteen full-length clones, containing both primer sequences used for cloning, were sequenced (four or five for each size class of 400, 500 and 700 bp). As shown in Fig. 2 and 3, there were six types of molecule of identical sequence. The longest DI RNA (DI-13, Fig. 3) had 679 nucleotides and was made up of three blocks (A, B and C) entirely derived from CyRSV genomic RNA (Grieco et al., 1989a). Block A is composed of the first 164 nucleotides of genomic RNA including the 5' leader sequence and the initiation codon of the 92K protein [open reading frame (ORF) 1]; block B is 112 nt long and represents the central part of the putative polymerase gene (ORF 2); block C is 403 nt long and corresponds to 49 nucleotides of the carboxyl terminus of the 22K protein gene (ORF 4) and the entire non-coding region of 354 nucleotides. The constitution of DI-13 RNA was the simplest of the DI RNAs generated de novo as it represents a linear deletion mutant of genomic RNA with two long deletions.

Sequence analysis of the smaller RNAs showed that they are formed by essentially the same genomic RNA sequence blocks with a progressive reduction in size caused by the introduction of further deletions inside blocks A and C of DI-13 RNA. As compared with DI-13, block A was almost identical in DI-33, except for a single base deletion (not shown in Fig. 3), and had one or two short deletions in DI-11, -10, -7 and -2. The termini of block A were conserved in all six types of molecule. Block B was the least affected; it had no deletions and only minor variations at its extremities (Fig. 2). Block C showed the greatest changes; there was progressive reduction in its size due to deletions in the central part and at the 5' end (Fig. 2 and 3).

Alignment of the first 15 nucleotides of conserved blocks of DI RNAs formed de novo.

Block A GGAAGUCUCUGCGAGA DI-10
Block B GGAAGGCUUGUGA DI-11, -10, -33, -2
Block B AGACGUUGUGAGAA DI-13
Block C GGAAGGCGAGACUGACUC C DI-13, -11
Block C1 GCGACACACUCUCACG DI-33, -10, -2
Block C2 AGUAGACCGCACUCUC DI-7
Block C3 ACGAGGACCACGCUCU C DI-33, -10
Block C4 UCUUGCACAAACC CGACUA DI-7
Block C5UGCAGGAAACCCACACA DI-2

Fig. 4. Alignment of the first 15 nucleotides of conserved blocks of DI RNAs formed de novo.
Fig. 5. Computer-generated secondary structure of sequences surrounding recombination sites in CyRSV genomic RNA (a to c). Free energy is indicated in kJ/mol. Arrows point to recombination sites.

Sites of DI RNA recombination

The most stable predicted secondary structures of the sequences surrounding the deleted regions of genomic RNA in DI-13 RNA were obtained using the algorithm of Zucker & Stiegler (1981). As shown in Fig. 5(a to c), these regions can be folded to form extensive secondary structures with the four rearrangement sites located within single-stranded sequences in interior or hairpin loops. Folding the entire DI-13 RNA molecule also generated a stable (ΔG, -41.9 kJ/mol) secondary structure in which recombination sites possibly involved in the formation of DI-2 RNA were found in unpaired sequences (not shown).

Discussion

DI RNAs of CyRSV generated de novo have essentially the same characteristics as DI RNA present with the virus in the initial inoculum (Rubino et al., 1990), i.e. the sequence is entirely derived from genomic RNA, there are no extra or repeated sequences and both 5' and 3' termini are conserved. In previous work we have found only one species of DI RNA, either because only the species contained in the inoculum was replicated (Rubino et al., 1990) or because, when purified genomic RNA was used as inoculum followed by successive subinoculations using sap, other species escaped attention (Burgyan et al., 1989). In this context, time of sampling and/or leaf position may be very important; for instance, the pattern of the sample of Fig. 1, lane 4 would indicate the presence of essentially one DI RNA, whereas a sample collected from different leaves of the same plant the day before contained several DI RNA species (Fig. 1, lane 1). The size distribution of novel DI RNAs thus seems to be a time-dependent event; DI RNA molecules that form first are longer than those formed later. The smaller molecules seem to be a stable form in the size range of 400 to 500 nt which is maintained in further passages.

The hypothesis that smaller DI RNAs originate from larger precursors is supported by the observation that smaller molecules are nearly always contained entirely within the larger molecules with no extra sequences. The only two exceptions are 10 and three nucleotides, at one extremity of DI-7 and DI-10, respectively, that are not present in DI-13. However, this could be due to the variability of the population of RNA precursors, which are similar but not identical to DI-13. In this connection it is worth noting that the presence of all the oligonucleotides of smaller DI RNAs of Semliki Forest virus in larger DI RNAs was taken as evidence for the evolution of small from large DI RNAs in high multiplicity passages (Stark & Kennedy, 1978). Another possibility is that DI RNAs of different size are generated simultaneously from the helper genome and that some molecules become predominant.

As pointed out by Cascone et al. (1990), the same mechanism may be operating in RNA recombination and generation of DI RNA. In the 'copy choice' mechanism (Lazzarini et al., 1981) the RNA polymerase may stop before reaching the 5' end of the template RNA and jump, together with nascent complementary RNA, to another site on a different or the same template. In the first case, RNA recombination would occur; in the second, deletions would be introduced in template RNA to form DI RNA. Romanova et al. (1986) developed a model explaining the formation of poliovirus RNA recombinants. They observed that crossovers do not take place at random but in single-stranded sequences or stretches with weak secondary structures. Such preferential sites of recombination are surrounded by secondary structures with a negative free energy, which constrains
the action of RNA polymerase. Occasionally the enzyme is unable to overcome such regions and it separates from the original template RNA and may resume synthesis at another template site. The conditions for this model to operate (i.e. the presence of stable secondary structures surrounding single-stranded loops) seem to exist in the genomic RNA structure of CyRSV. Resumption of RNA synthesis by RNA polymerase also requires the presence of initiation signals with similar nucleotide sequences in different parts of the RNA. As shown in Fig. 4, many recombination sites start with G followed by A, which is part of the consensus recognized in all replicating molecules of the CyRSV system, i.e. genomic, subgenomic and satellite RNAs (Rubino et al., 1990). A model based on discontinuous action of the RNA polymerase has been proposed to explain the generation of DI RNA from the mouse hepatitis coronavirus genome (Makino et al., 1988). Likewise, dissociation of RNA polymerase from the template due to the presence of a hairpin structure is at the base of the model presented by Cascone et al. (1990) for the generation of TCV DI RNA and RNA recombinants.

We thank Dr P. D. Nagy for help given in the initial part of this work, T. Dalmay for the generation of secondary structures and Professor G. P. Martelli for helpful discussions and revision of the manuscript.

References


(Received 7 August 1990; Accepted 13 November 1990)