Increase by Calcium in Production of Interferon by L929 Cells Induced with Polyriboinosinate-Polyribocytidylate Complex

(Accepted 15 March 1978)

SUMMARY

Calcium chloride (5 to 20 mM) potentiated interferon production induced by rI₆:rC₆ in L929 mouse fibroblasts up to a thousand-fold. Higher concentrations of calcium (20 to 65 mM) mixed with rI₆:rC₆ were associated with increased cytotoxicity and a more acidic medium, but were effective in enhancing interferon production if preparations were adjusted to a uniform pH. Although calcium increased cellular binding of ³H-rC₆:rI₆, only a partial correlation between binding and interferon production was observed.

Interferon production, induced by polyriboinosinic acid–polyribocytidylic acid (rI₆:rC₆), is potentiated by polycations such as DEAE-dextran and polyamines (Dianzani et al. 1968; Lampson et al. 1969; Billiau et al. 1970). In addition, these polycationic compounds increase the infectivity of purified virus nucleic acids, probably by enhancing cellular adsorption and perhaps by protecting them from nucleases (Vaheri & Pagano, 1965; McCutchen & Pagano, 1968; Smull & Ludwig, 1962). The infectivity of virus nucleic acids is also increased by calcium (Dubes & Klinger, 1961; Graham & Van der Eb, 1973). These findings led us to examine the influence of calcium on interferon production.

L929 mouse fibroblasts (American Type Culture Collection, CCL 1), grown in a humidified incubator with 5% CO₂ in minimal essential medium (MEM; Earle’s base) supplemented with 10% foetal calf serum (FCS), 2 mM-glutamine, and 50 µg/ml gentamicyn, were used for interferon induction and assay. rI₆:rC₆ (Miles Laboratories, Elkart, Indiana) was suspended in 0.2 M-phosphate buffered saline, pH 7.2, at 1000 µg/ml. This was diluted on the day of use with fresh tris-MEM (3 vol. of MEM, 1 vol. 0.2 M-tris buffer adjusted to pH 7.3 to 7.35) to give a concentration of 200 µg/ml rI₆:rC₆. A 2 M stock solution of CaCl₂ was freshly diluted to twice the desired final concentration in tris-MEM. rI₆:rC₆ and CaCl₂ solutions were mixed 1:1 at room temperature. The inducing mixture without added CaCl₂ contained approx. 1.3 mM-calcium. To make radiolabelled rI₆:rC₆, rI₆ (3.4 µM-P) (Miles Laboratories) was annealed to ³H-rC₆ (1.7 µM-P, 10 µCi) (Schwartz/Mann, Orangeburg, New York) at 70°C and cooled overnight at room temperature. Cells were washed with Earle’s balanced salt solution (EBSS) and overlaid with rI₆:rC₆–CaCl₂. After incubation for 1 h at 37°C, the supernatant was aspirated, the cells were washed three time with EBSS and growth medium was added. After 24 h at 37°C, media were collected for interferon assay. For cell counts, media were aspirated 3 h after induction and cells were scraped from the surface, suspended, and counted in a haemocytometer. Viability was determined by trypan blue exclusion. In isotopic experiments, monolayers, grown on coverslips, were overlaid with ³H-rC₆–CaCl₂. After 1 h at 37°C, monolayers were washed with EBSS and growth medium was added. Following a further 2 h incubation, coverslips were placed in liquid scintillation vials, and disintegrations per minute were determined. Replicate coverslips were incubated for an additional 21 h and the media then collected for interferon assay.
Interferon was assayed and characterized as previously described (Borden & Leonhardt, 1977) by a modification of the dye uptake method (Finter, 1969). Interferon titres were standardized and expressed as reference units by incorporation of a laboratory standard into each assay and repeated comparison to the mouse interferon reference standard preparation G002-902-026 from the National Institutes of Health, Bethesda, Md. All results presented are representative of repeated experiments.

Interferon production in L929 cells, after induction by rI₆·rC₉, has generally been minimal or absent. However, a rI₆·rC₉·CaCl₂ mixture induced interferon production to relatively high levels (Fig. 1). The greatest increases in interferon production were at CaCl₂ concentrations of 4 to 20 mM. CaCl₂ alone (no rI₆·rC₉) at concentrations of 4 to 64 mM did not result in interferon production. Mixing rI₆·rC₉ with varying concentrations of MgSO₄ rather than CaCl₂ did not enhance interferon production. CaCl₂ at concentrations of 2 to 48 mM did not increase interferon production by Newcastle disease virus.

The inhibition of interferon production at high calcium concentrations correlated with a decrease in viable cells (Fig. 1). Both total cell count and viability decreased at higher calcium concentrations. No corresponding decrease in cell count occurred with CaCl₂ alone. The pH of the rI₆·rC₉·calcium mixture also significantly affected interferon production. Mixing of the rI₆·rC₉ with the higher calcium concentrations resulted in a decrease in the pH of the medium. When the pH of the CaCl₂·rI₆·rC₉ inducing mixture was adjusted to maintain a uniform alkaline pH at all calcium concentrations, interferon production was maximally augmented at higher calcium concentrations (30 to 65 mM).

Following the addition of CaCl₂ to rI₆·rC₉, an amorphous precipitate formed in amounts proportional to the concentration of calcium. On the basis of previous work on the effects of CaCl₂ on adenovirus DNA infectivity (Graham & Van der Eb, 1973), it seems likely that the precipitate consisted of rI₆·rC₉ and calcium phosphate. Upon microscopic examination it appeared that this precipitate was cell-associated. To evaluate this further, ³H·rI₆·rC₉ was used with CaCl₂ as an inducer. Enhanced association of ³H·rI₆·rC₉ with cells was observed. However, only a partial correlation existed between increases in cell-associated rI₆·rC₉ and interferon production (Table 1).
Table 1. Effect of added calcium on cellular uptake of 3H-$rI_{n:rC_n}$

<table>
<thead>
<tr>
<th>Added CaCl$_2$ (mm)</th>
<th>Cell-associated 3H-$rI_{n:rC_n}$ (d/min)†</th>
<th>Interferon produced (units/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5975</td>
<td>< 10</td>
</tr>
<tr>
<td>5</td>
<td>15600</td>
<td>290</td>
</tr>
<tr>
<td>10</td>
<td>25400</td>
<td>700</td>
</tr>
<tr>
<td>20</td>
<td>50900</td>
<td>380</td>
</tr>
<tr>
<td>50</td>
<td>23300</td>
<td>270</td>
</tr>
</tbody>
</table>

$rI_{n:rC_n}$ at 100 µg/ml in tris-MEM, pH 7.2, used as inducer. Final pH adjusted to 7.2-7.4. Results presented are representative of triplicate experiments.

† Disintegrations per min/coverslip.

Calcium-mediated enhancement of interferon production by $rI_{n:rC_n}$ is probably a result of a membrane-associated co-precipitate of calcium phosphate and $rI_{n:rC_n}$. Such a precipitate facilitated the infectivity of adenovirus DNA for KB cells and poliovirus RNA for monkey kidney cells (Dubes & Klinger, 1961; Graham & Van der Eb, 1973). However, in contrast to the enhancement by calcium in the infectivity of adenovirus DNA, which occurred at optimal calcium concentrations of 100 mM (Graham & Van der Eb, 1973), the greatest increases in interferon production by $rI_{n:rC_n}$ were in the range, depending on pH, of 5 to 50 mM. Experimental conditions, together with the differences in nucleic acid, cells and biological effects examined, probably account for this discrepancy. If the effects of CaCl$_2$ which we have observed in L929 mouse fibroblasts also occur in other cells, the findings may be of practical significance in induction of interferon.

Other cations such as DEAE-dextran, which enhance interferon production, have also been demonstrated to increase cell adsorption of $rI_{n:rC_n}$ (Bausek & Merigan, 1969; Billiau et al. 1970; Pitha & Carter, 1971). However, no correlation between the amount of $rI_{n:rC_n}$ bound to cells and interferon produced has been observed, and both active and inactive polynucleotides become cell-associated at equivalent rates (Colby & Chamberlin, 1969; De Clercq & De Somer, 1972; Pitha et al. 1972, 1974; Tytell & Field, 1972). Association of $rI_{n:rC_n}$ with cells is a temperature-independent step, but unless a 37 °C incubation follows low temperature treatment, interferon production does not occur (Bausek & Merigan, 1969; Pitha & Carter, 1971). These findings suggest that $rI_{n:rC_n}$ interaction with the cell membrane is a non-specific event.

Both calcium and DEAE-dextran may increase the availability of $rI_{n:rC_n}$ to the specific interferon induction site. Whether this site is on the plasma membrane or inside the cell remains uncertain. Polyene antibiotics such as amphotericin B also increase interferon production by $rI_{n:rC_n}$ up to a thousand-fold (Borden & Leonhardt, 1979). However, enhancement by polyenes does not result from increased adsorption of $rI_{n:rC_n}$ but rather may involve increased intracellular penetration (Borden et al. 1977). DEAE-dextran was most effective in augmenting interferon production when used at concentrations which resulted in maximum reduction of the anionic charge of the polyribonucleotide (Pitha & Carter, 1971). Such a neutral polyanion–polycation complex may well traverse the non-polar lipid membrane more readily. Since the cation, calcium, can result in a similar reduction in negative charge on $rI_{n:rC_n}$ and also can have diverse effects on transport processes and enzymatic function, it may enhance interferon production by a mechanism other than the observed increase in cell membrane adsorption.
Short communications

Competent technical assistance from Jack McBain and Peggy H. Leonhardt contributed to the completion of this work. The work was supported by a grant from the Wisconsin Division, American Cancer Society, and NIH grant CA 20432. Bruce W. Booth was supported by NIH Research Fellowship IF 22 CA 00576 and NIH Training Grant CA 18397. E. C. Borden is a Junior Faculty Fellow of the American Cancer Society.

Division of Clinical Oncology
Departments of Human Oncology and Medicine
University of Wisconsin Center for Health Sciences
Madison, Wisconsin 53706, U.S.A.

REFERENCES

(Received 16 August 1977)

* Present address: Departments of Virology and Haematology, Walter Reed Institute for Medical Research, Washington, D.C. 20012, U.S.A.