Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of *Panax notoginseng*

Meng-Yue Zhang,† Juan Cheng,† Ying Cai, Tian-Yuan Zhang, Ying-Ying Wu, Deene Manikprabhu, Wen-Jun Li and Yi-Xuan Zhang

Abstract

A Gram-stain-positive, rod-shaped, motile bacterium designated as SYP-B691T was isolated from rhizospheric soil of *Panax notoginseng*. Phylogenetic analysis indicated that SYP-B691T clearly represented a member of the genus *Bacillus* and showed 16S rRNA gene similarity lower than 97.0% with the type strains of species of the genus *Bacillus*, which indicates that it should be considered as a candidate novel species within this genus. The optimum growth of the strain was found to occur at 37°C and pH 7.0–9.0. The genomic DNA G+C content was determined to be 45.2 mol%. It contained *meso*-2,6-diaminopimelic acid in the cell-wall peptidoglycan. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. MK-7 was the only menaquinone identified. The major cellular fatty acids of SYP-B691T were identified as iso-C15:0 and anteiso-C15:0. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, SYP-B691T merits recognition as a representative of a novel species of the genus *Bacillus*, for which the name *Bacillus notoginsengisoli* sp. nov. is proposed, with SYP-B691T (DSM 29196T=JCM 30743T) as the type strain.

The genus *Bacillus* was first proposed by Cohn [1] for aerobic or facultatively anaerobic, Gram-stain-positive, endospore-forming and rod-shaped bacteria to be included in the family *Bacillaceae* of the class *Bacilli* [2]. At present, there are 318 species described in the genus *Bacillus* (www.bacterio.net/bacillus.html). The many applications of representatives of this genus have led to the frequent description of novel species isolated from various ecosystems and reported in recent years, such as *Bacillus crassostreae* [3], *Bacillus gobiensis* [4], *Bacillus lycopersici* [5], *Bacillus oleivorans* [6], *Bacillus oryzaeorticis* [7], *Bacillus paralicheniformis* [8], *Bacillus poly machus* [9], *Bacillus riletigrophilus* [10], *Bacillus shacheensis* [11], *Bacillus stam sii* [12] and *Bacillus tianshenii* [13]. The commonest peptidoglycan type is *meso*-diaminopimelic acid (DAP), and MK-7 is the major menaquinone in species of the genus *Bacillus*. DNA G+C contents of species within the genus *Bacillus* range from 32 to 66 mol% [14].

During a study of microbial diversity in the rhizospheric soil sample of *Panax notoginseng* collected from Yunnan province, western China, many potential strains were isolated and many of them were reported to represent novel species such as *Flavobacterium notoginsengisoli* [15], *Luteimonas notoginsengisoli* [16] and *Sinomonas notoginsengisoli* [17]. Among various potential isolates, strain SYP-B691T showed similar phenotypic characteristics to those of members of the genus *Bacillus*, so it was selected for further identification. The 16S rRNA gene sequence of SYP-B691T showed highest similarity to that of *Bacillus subter raneus* (96.9%). This result encouraged us to establish the taxonomic position of SYP-B691T through phenotypic, chemotaxonomic and phylogenetic analyses.

SYP-B691T was isolated from a soil sample collected from the rhizosphere of *Panax notoginseng* in Yunnan province, PR China (23° 48' 3.64" N, 103° 37' 50.04" E). The soil suspension (1 g soil suspended in 9 ml sterile saline solution) was serially diluted and incubated on Luria–Bertani (LB) medium (Oxoid) supplemented with 50 mg l−1 nystatin (30°C, one week). Colonies were selected and re-streaked repeatedly onto LB agar (Oxoid) to obtain a pure culture. The reference strain *B. subter raneus* DSM 13966T was selected for the comparison of morphological, physiological, chemotaxonomic and phylogenetic characteristics. The reference strain was cultivated under the same culture conditions as the novel species; growth on LB medium at 37°C.

Author affiliations: †School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China; ‡State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.

Correspondence: Yi-Xuan Zhang, zhangyxzsh@163.com

Keywords: *Bacillus notoginsengisoli* sp. nov.; Gram-stain-positive; *Panax notoginseng*; rhizosphere.

Abbreviation: DAP, *meso*-diaminopimelic acid.

†These authors contributed equally to this work.

The 16S rRNA gene sequence of strain SYP-B691T has been deposited in GenBank/EMBL/DDBJ under the accession number KP076294.

Two supplementary figures and one supplementary table are available with the online Supplementary Material.
Cell morphology was observed by a light microscopy (BH-2; Olympus) and transmission electron microscope (JEM-2100, JEOL). For transmission electron microscopy, harvested cells were suspended with sterilized water and fixed with 2% sodium phosphotungstate. The cell specimens were observed with a transmission microscope. Gram staining was performed using standard Gram’s reaction. Flagella and endospores were examined according to the methods of Leifson and Schaeffer–Fulton, respectively [18]. Growth at various temperatures (4–55°C) and NaCl tolerance (0–12.0% w/v) were observed using LB as the basal medium. The pH range (pH 4.0–12.0% w/v) were observed using LB as the basal medium.

Catalase activity was determined by assessing the production of bubbles on addition of a drop of 3% (v/v) H₂O₂ on the bacterial culture. Oxidase activity was determined based on oxidation of tetramethyl-p-phenylenediamine [20]. H₂S production, milk coagulation and peptonization were performed as described by Gonzalez et al. [21]. Other phenotypic and enzyme activities were tested using the API 20NE (bioMérieux), API ZYM (bioMérieux) and GEN III Micro Plate (Biolog) assays according to the manufacturer’s instructions.

SYP-B691T was Gram-stain-positive, rod-shaped and 0.4–0.7×1.1–5.9 µm in size with ellipsoidal endospores located sub-terminally and centrally in swollen sporangia, and motile with peritrichous flagella (Fig. S1, available in the online Supplementary Material). The temperature for growth was in the mesophilic range (21–42°C) which was quite similar to that for B. subterraneus DSM 13966T (21–45°C). The NaCl tolerance was up to 3.0% (w/v) which was less than that for B. subterraneus DSM 13966T (8.0% w/v). The pH range for growth was (5.0–10.0) which was almost similar to that of B. subterraneus DSM 13966T (6.0–10.0). SYP-B691T was positive for catalase, nitrate reduction and hydrolysis of Tweens 40 and 60 but negative for oxidase, indole production, hydrolysis of cellulose, gelatin and starch, which were similar to the phenotype of B. subterraneus DSM 13966T. SYP-B691T was positive for urease but negative for milk peptonisation; in contrast, B. subterraneus DSM 13966T was negative for urease and positive for milk peptonisation. The API ZYM results indicated that SYP-B691T was positive for leucine arylamidase, trypsin and acid phosphatase, whereas B. subterraneus DSM 13966T was negative for them. The Biolog GEN III results indicated that SYP-B691T was negative for dextrin, lactose, D-mannitol, D-fructose, D-arabitol and glycerol, whereas B. subterraneus DSM 13966T was positive for them. The strain SYP-B691T was sensitive to 1% sodium lactate, nalidixic acid and D-serine, whereas B. subterraneus DSM 13966T was resistant to them. Features that differentiate SYP-B691T from B. subterraneus DSM 13966T are listed in Table 1.

The genomic DNA isolation and 16S rRNA gene sequencing were performed according to the methods reported by Cui et al. [22] and Li et al. [23]. Pairwise sequence similarities were calculated using a global alignment algorithm implemented at the EzTaxon-e server (www.ezbiocloud.net/eztaxon; [24]). Phylogenetic analysis was performed

Table 1. Differential characteristics of SYP-B691T and the type strains of related species of the genus Bacillus

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range for growth (°C)</td>
<td>21–42</td>
<td>21–45</td>
<td>10–45</td>
<td>15–45</td>
<td>15–45</td>
<td>10–45</td>
<td>25–40</td>
</tr>
<tr>
<td>NaCl range (w/v, %)</td>
<td>0–3.0</td>
<td>0–8.0</td>
<td>0–5.0</td>
<td>0–4.0</td>
<td>0–7.0</td>
<td>0–13.0</td>
<td>0–5.0</td>
</tr>
<tr>
<td>Oxidase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>45.2</td>
<td>43*</td>
<td>43.8</td>
<td>43.1</td>
<td>42.2</td>
<td>41</td>
<td>42.8</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>–</td>
<td>–</td>
<td>W</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>W</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H₂S production</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Starch hydrolysis</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-D-Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>ND</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-acetyl-glucosamine</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gluconate</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Data obtained from Kanso et al. [34].
An almost complete 16S rRNA gene sequence (1530 bp) was obtained and submitted to GenBank under the accession number KP076294. The BLAST results showed that the SYP-B691T had highest similarity with *B. subterraneus* DSM 13966T (96.9 %) and less than 96.8 % with the other type strains of species of the genus *Bacillus*. It is generally accepted that for two bacterial species sharing less than 97.0 % 16S rRNA gene sequence similarity, their DNA–DNA relatedness should be less than 70 % [33]. So, it was not necessary to carry out DNA–DNA hybridization between the SYP-B691T and other strains of species of the genus *Bacillus*.

The neighbour-joining tree (Fig. 1) showed the SYP-B691T clustered closely with the members of the genus *Bacillus*. The cluster was found to be stable when the trees reconstructed by using maximum-parsimony and maximum-likelihood methods were examined. The genomic DNA G+C content of SYP-B691T was 45.2 mol%, which was higher than that of *B. subterraneus* DSM 13966T (43.0 mol%) [34].

Analysis of the isomer of diaminopimelic acid was performed according to the procedures described by Hasegawa et al. [35] and Lechevalier and Lechevalier [36]. Polar lipids were extracted as described by Minnikin et al. [37] and identified by two-dimensional TLC [38]. The quinones were extracted [39] and analyzed using HPLC [40]. For cellular fatty acid analysis, biomass was obtained from cell grown on tryptone soy agar (TSA; Difco) at 37 °C for 3 days. The analysis was performed by using the Microbial Identification System (Sherlock Version 6.1; MIDI database: TSBA6; [41]).

SYP-B691T contained *meso*-2,6-diaminopimelic acid (*meso*-DAP) as the cell-wall diamino acid. The polar lipids consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an 45.2 mol%, which was higher than that of *B. subterraneus* DSM 13966T (43.0 mol%) [34].

![Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences of SYP-B691T and strains of other related species of the genus *Bacillus*.](image)

Fig. 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences of SYP-B691T and strains of other related species of the genus *Bacillus*. Bhargavaea beijingensis ge10T (EF371374) was used as an outgroup. Bootstrap values (expressed as percentages of 1000 replications) of above 50 % are shown at the branch points. Bar, 0.005 substitutions per nucleotide position. * indicates that the clades that were conserved when maximum-parsimony and maximum-likelihood method were used to reconstruct the phylogenetic trees.
unknown phospholipid (PL), the major polar lipids were same as those of B. subterraneus DSM 13966^T (Fig. S2). MK-7 was the only menaquinone identified; this characteristic was consistent with the phenotype of B. subterraneus DSM 13966^T. The major cellular fatty acids both of SYP-B691^T and B. subterraneus DSM 13966^T detected were iso-C_{15:0} anteiso and anteiso-C_{15:0} but there were differences in composition and content of the minor fatty acids. A detailed fatty acid profile of SYP-B691^T and its comparative analysis with B. subterraneus DSM 13966^T are included in Table S1.

Based on the phenotypic and chemotaxonomic characteristics, SYP-B691^T is proposed to represent a novel species within the genus Bacillus, for which the name Bacillus notoginsengisoli sp. nov. is proposed.

**DESCRIPTION OF **Bacillus notoginsengisoli sp. nov.

Bacillus notoginsengisoli (no.to.gin.seng.so’li. N. L. neut. n. *notoginsengii* notoginseng; L. n. solum soil; N. L. gen. n. *notoginsengisoli* of soil of a notoginseng root, the source of the organism).

Cells are Gram-stain-positive, rod shaped (0.4–0.7 × 1.1–5.9 µm), have ellipsoidal endospores located sub-terminally and centrally in swollen sporangia, and are motile with peritrichous flagella. Growth occurs at 21–42 °C, pH 5.0–10.0 and with up to 3.0 % (w/v) NaCl. Optimal growth occurs at 37 °C, pH 7.0–9.0 and in the presence of 0–2.0 % NaCl (w/v). Positive for catalase, aesculin hydrolysis, urease, milk coagulation, nitrate reduction and hydrolysis of Tween 40 and 60 but negative for arginine dihydrolase, H₂S production, indole production, hydrolysis of casein, cellulose, gelatin or starch, methyl red and Voges–Proskauer tests, milk peptonisation, oxidase and hydrolysis of Tween 20 and 80. Tests for acid phosphatase, alkaline phosphatase, cystine arylamidase, leucine arylamidase, trypsin and valine arylamidase are positive. Positive for utilization of L-arabinose, D-fructose-6-phosphate, gelatin, α-D-glucose, N-acetyl-glucosamine, gluconate, D-gluconic acid, L-lactic acid, maltose, glycol-L-proline and trehalose but negative for acetoclastic acid, L-arginine, D-arabitol, D-aspartic acid, α-keto butyric acid, γ-aminobutyric acid, cellobiose, citric acid, dextrin, formic acid, D-fucose, L-fucose, N-acetyl-D-galactosamine, D-galacturonic acid, gentiobiose, 3-methyl glucose, α-ketogluutaric acid, L-histidine, myo-inositol, lactose, D-malic acid, D-mannose, D-mannitol, melibiose, mucic acid, pectin, propionic acid, L-pyroglutamic acid, quinic acid, raffinose, L-rhamnose, D-salcin, D-sorbitol, stachyose, sucrose and turanose. The whole-cell hydrolysates contain meso-DAP as the cell-wall diamino acid. The polar lipids are consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an unknown phospholipid (PL). MK-7 is the only menaquinone identified. The major cellular fatty acids are iso-C_{15:0} anteiso and anteiso-C_{15:0}. The type strain is SYP-B691^T (=DSM 29196^T=JCM 30743^T), which was isolated from the rhizosphere of *Panax notoginseng*. The genomic DNA G+C content of the type strain is 45.2 mol%.

Funding information

This research is supported by the Major Scientific and Technological Project of Yunnan Province (2016ZF001-001, 2017IB038), Yung-Chi Cheng academician workstation of Yunnan provincial academy of science and technology (2015C017). W.-J. Li is also supported by a Project Supported by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (2014).

Acknowledgements

The authors are grateful to Dr Rüdiger Pukall (DSMZ) for kindly providing the reference type strain.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

This work is the original work of the authors. The work described has not been submitted elsewhere for publication, in whole or in part, and all authors listed carried out the data analysis and manuscript writing and this article does not contain any studies with human participants or animals performed by any of the authors. Moreover, all authors read and approved the final manuscript.

References

Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP

