Actinomadura adraensis sp. nov., an actinobacterium isolated from Saharan soil

Abdelhadi Lahoum,1 Noureddine Bouras,1,2 Carol Verheecke,3 Florence Mathieu,3 Peter Schumann,4 Cathrin Spröer,4 Hans-Peter Klenk5 and Nasserdine Sabaou1

1Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure, Kouba, Alger, Algeria
2Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria
3Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), INP de Toulouse/ENSAT, 1, avenue de l’Agrobiopôle, Castanet-Tolosan cedex, France
4DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
5School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK

A novel actinobacterial strain, designated ACD12T, was isolated from a Saharan soil sample collected from Adrar province, southern Algeria. A polyphasic study was carried out to establish the taxonomic position of this strain. Strain ACD12T was observed to form extensively branched substrate mycelia. Aerial mycelium was absent or was weakly produced on all media tested, while spore chains were short with a hooked and irregular spiral form (2–3 turns). The dominant diaminopimelic acid isomer in the cell wall was meso-diaminopimelic acid. Glucose, ribose, galactose, mannose and madurose occurred in whole-cell hydrolysates. The major phospholipid was diphosphatidylglycerol and phosphatidylinositol. The predominant menaquinone was MK-9 (H4). The fatty acid profile was characterized by the presence of C16:0, C17:0, C16:0, C18:0, C18:1 cis9 and iso-C15:0. Results of 16S rRNA gene sequence comparisons revealed that strain ACD12T shared the highest degree of 16S rRNA gene sequence similarity with *Actinomadura sputi* DSM 45233T (98.3%) and *Actinomadura hallensis* DSM 45043T (97.8%). All tree-making algorithms used also supported strain ACD12T forming a distinct clade with its most closely related species. In addition, DNA–DNA hybridization indicated only 39.8% relatedness with *A. sputi* DSM 45233T and 18.7% relatedness with *A. hallensis* DSM 45043T. The combined phenotypic and genotypic data show that the novel isolate represents a novel species of the genus *Actinomadura*, for which the name *Actinomadura adraensis* sp. nov., is proposed, with the type strain ACD12T (=DSM 46746T =CECT 8842T).

The genus *Actinomadura*, a member of the family *Thermomonosporaceae*, was proposed by Lechevalier & Lechevalier (1968). The strains of species of the genus *Actinomadura* have been principally isolated from soil (Lu et al., 2003; Quintana et al., 2008; Ara et al., 2008). However, some species have been isolated from patients, such as *Actinomadura sputi* (Yassin et al., 2010). This genus is of great importance in several domains, including the production of new bioactive metabolites active against pathogenic microorganisms (Eunanoraset et al., 2015). Species of the genus *Actinomadura* produce an extensively branched non-fragmenting substrate mycelium and, generally, aerial mycelium is moderately developed or absent. Spore chains are short and differentiate into straight, spiral or hooked forms. The strains of species of the genus *Actinomadura* are characterized by the presence of type III cell walls (meso-diaminopimelic acid without glycine). Whole-cell hydrolysates contain madurose as the diagnostic sugar. Cell membranes contain diphosphatidylglycerol and phosphatidylinositol as the diagnostic phospholipids, and MK-9(H4) and MK-9(H6) as the major menaquinones.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain ACD12T is KU356942.

Two supplementary figures and one supplementary table are available with the online Supplementary Material.
Actinomadura adraensis sp. nov.

(Lechevalier et al., 1977; Kroppenstedt et al., 1990; Wink et al., 2003; Cook et al., 2005). Many species of the genus Actinomadura have been described in recent years and, at the time of writing, the genus comprises 53 species with validly published names (http://www.bacterio.net).

During our study on the actinobacterial diversity of Saharan soils, many new taxa were recorded (Saker et al., 2014; Aouiche et al., 2015; Boubetra et al., 2015; Bouras et al., 2015; Meklat et al., 2015). In the present work, we describe a novel species of actinobacteria belonging to the genus Actinomadura.

Strain ACD12T was isolated, using the standard dilution plate method, from a sandy loam soil sample collected from the palm grove of the Bouda region, adrar province, southern Algeria (27°52’N, 0°17’W), and grown on chitin-vitamin agar medium, which is recommended for isolating rare actinobacteria (Hayakawa & Nonomura, 1987). The medium was supplemented with 80 µg ml⁻¹ of cycloheximide to inhibit the development of invasive fungi. After 21 days of incubation at 30 °C, colonies were transferred onto International Streptomycetes Project (ISP) 2 medium (Shirling & Gottlieb, 1966) and purified strain ACD12T was maintained at 4 °C.

Cultural characteristics were observed after 7, 14 and 21 days of incubation at 30 °C using several media: Bennett’s agar (Waksman, 1961), yeast-extract-malt extract agar (ISP 2), oatmeal agar (ISP 3), inorganic salts-starch agar (ISP 4) (Shirling & Gottlieb, 1966) and humic acid-vitamin agar (Hayakawa & Nonomura, 1987). Morphological characteristics were determined using the naked-eye and by using light and scanning electron microscopes (Motic, B1 Series and JEOL, JSM-7100F, respectively). The ISCC-NBS colour name chart (Kelly & Judd, 1976) was used to determine the colours of the aerial mycelium, substrate mycelium and diffusible pigments.

Several physiological tests were used to characterize the actinobacterial strain. The utilization of carbohydrates and decarboxylation of organic acids were studied using the method of Gordon et al. (1974). Degradation of adenine, aesculin, arbutin, gelatin, guanine, hypoxanthine, starch, Tween 80, t-tyrosine and xanthine, reduction of nitrate, and also coagulation and peptonisation of milk, were evaluated according to the methods of Goodfellow (1971) and Marchal et al. (1987). Growth at different temperatures (15, 20, 25, 30, 37, 40 and 45 °C) and at different pH values (5, 6, 7, 8, 9, 10 and 11) was determined on ISP 2 medium.

Biomass for chemotaxonomic studies was obtained by growing strain ACD12T on ISP 2 broth in flasks on a rotary shaker at 250 r.p.m at 30 °C for one week. Cells were harvested by centrifugation and washed several times with distilled water, then dried at 37 °C. Isomers of diaminopimelic acid and cell sugars were detected following the standard procedures described by Becker et al. (1964) and Lechevalier & Lechevalier (1970). Menoquinones were extracted and purified by using the methods of Minnikin et al. (1984) and were analysed by HPLC (Kroppenstedt, 1982, 1985). Polar lipids were extracted and identified by using two-dimensional TLC (Minnikin et al., 1984). The fatty acid profile was determined by the method of Sasser (1990), using the Microbial Identification System (MIDI) Sherlock software version 6.1 (method TSBA40, TSBA6 database).

Genomic DNA was extracted with a DNA extraction kit (MasterPure Gram-Positive DNA Purification Kit, Epicentre Biotechnologies). PCR amplification of the 16S rRNA gene sequence of strain ACD12T was carried out according to the procedures described by Rainey et al. (1996). The EzTaxon-e server (Kim et al., 2012) was employed to identify phylogenetic neighbours and to calculate pairwise 16S rRNA gene similarities. The 16S rRNA gene sequence of strain ACD12T was aligned against corresponding nucleotide sequences using the CLUSTAL W program (Larkin et al., 2007) of representatives of the genus Actinomadura retrieved from the EzTaxon-e server.

Phylogenetic trees were reconstructed with the neighbour-joining algorithm (Saitou & Nei, 1987) with the model of Jukes & Cantor (1969), the maximum-likelihood algorithm (Felsenstein, 1981) with the Kimura 2-parameter model (Kimura, 1980) and maximum-parsimony algorithm (Fitch, 1977) using molecular evolutionary genetics analysis, (MEGA version 5) (Tamura et al., 2011). The topology of the phylogenetic trees was evaluated by bootstrap analysis (Felsenstein, 1985), based on 1000 resamplings of the neighbour-joining dataset.

For DNA–DNA relatedness studies, DNA was isolated by using a French pressure cell (Thermo Spectronic) and was purified by chromatography on hydroxyapatite, as described by Cashon et al. (1977). DNA–DNA hybridization was carried out in duplicate, as described by De Ley et al. (1970) with the modifications described by Huss et al. (1983).

Strain ACD12T exhibited moderate growth on ISP 2, ISP 3, ISP 4 and Bennett’s media. The isolate formed extensively branched substrate mycelium, which were light beige. No aerial mycelium was observed on the media tested, while a

![Fig. 1. Scanning electron micrograph of spore chains of strain ACD12T. The strain was grown on humic acid-vitamin agar medium for 2 weeks at 30 °C. Bar, 1 µm.](http://ijs.microbiologyresearch.org)
very scanty white aerial mycelium was observed only on humic acid-vitamin agar medium. Spore chains (2–12 spores) were observed to be short with hooked and irregular spiral forms and with a smooth surface (Fig. 1). No diffusible pigments were detected on any of the media tested. No sporangia, sclerotia or synnemata were observed.

Strain ACD12T was found to grow at 25–37 °C, at pH 7–10 and at 0–2 % (w/v) NaCl. Strain ACD12T and its two most closely related reference type strains (Actinomadura spuти DSM 45233T and Actinomadura hallensis DSM 45043T) were positive for the utilization of ascellin and cellobiase, and negative for the utilization of adenine, xanthine and raffinose. However, the novel strain differed from the two reference type strains in terms of other physiological characteristics, as illustrated in Table 1. The complete physiological characteristics of strain ACD12T are given in the species description.

Strain ACD12T exhibited chemical markers typical of members of the genus Actinomadura. The cell wall of strain ACD12T was found to contain meso-diaminopimelic acid as the diagnostic peptidoglycan diamino acid, but not glycine. The whole-cell hydrolysate was found to contain madurose as the diagnostic sugar, along with glucose, ribose, galactose and mannose. These results indicate that this strain has type IIIB (Lechevalier & Lechevalier, 1970). The predominant menaquinone was determined to be MK-9(H6) (64.5 %) with small amounts of MK-9(H8) (12.5 %), MK-9(H6) (12 %) and MK-9(H2) (2.3 %) also detected. The diagnostic phospholipids detected were diphosphatidylglycerol and phosphatidylinositol, which corresponds to phospholipid type PI (Lechevalier et al., 1977); phosphatidylinositol mannosides and phosphatidylglycerol were also present (Fig. S1, available in the online Supplementary Material). The cellular fatty acids higher than 5 % were identified as C16:0 (22.2 %), 10-methyl C17:0 (15.2 %), C17:1ω9c (11.5 %), C15:0 (11.1 %), 10-methyl C16:0 (9.3 %) and C18:1ω9c (5 %). Details are given in Table S1.

Phylogenetic analysis of the 16S rRNA gene sequence (1484 bp, GenBank accession KU356942) confirmed the placement of strain ACD12T within the genus Actinomadura. High degrees of 16S rRNA gene sequence similarity were found between strain ACD12T and its nearest neighbours, A. spuти DSM 45233T (98.3 %) and A. hallensis DSM 45043T (97.8 %).

The similarity of the 16S rRNA gene sequence of strain ACD12T to those of other members of the genus Actinomadura were found to be lower than 97.7 %. The phylogenetic relationships between strain ACD12T and members of the genus Actinomadura are demonstrated in the neighbour-joining (Fig. 2), maximum-parsimony and maximum-like-lihood dendrograms (Fig. S2). The levels of DNA–DNA relatedness of strain ACD12T with A. spuти DSM 45233T and A. hallensis DSM 45043T were 39.8 % and 18.7 %, respectively (standards deviations were 5.6 and 0.7 %, respectively). These values are well below the 70 % threshold proposed by Wayne et al. (1987) for the delineation of separate species.

Based on these phenotypic and genotypic data, strain ACD12T is a member of the genus Actinomadura and represents a novel species, for which the name Actinomadura adrarensis sp. nov. is proposed.

Table 1. Phenotypic characteristics that differentiate strain ACD12T from its most closely related species of the genus Actinomadura

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial mycelium on ISP2 medium</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spore-chains arrangement</td>
<td>Hooks, spirals</td>
<td>Straight</td>
<td>Hooks, spirals</td>
</tr>
<tr>
<td>Spore-surface ornamentation</td>
<td>Smooth</td>
<td>Smooth</td>
<td>Warty</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adonitol</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α-Arabinose</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>δ-Fructose</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>δ-Glucose</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>δ-Lactose</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>δ-Maltose</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>δ-Mannitol</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α-Rhamnose</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>δ-Sorbitol</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>δ-Trehalose</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>δ-Xylose</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Decomposition of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casein</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tween 80</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α-Tyrosine</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Starch</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 °C</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Growth in 3 % (w/v) NaCl</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
mycelium. No aerial mycelium is observed on ISP 2, ISP 3, ISP 4 and Bennett’s media, while a very scanty white aerial mycelium is observed on humic acid–vitamin agar medium. Aerial mycelium bear chains of spores (2–12 spores) with hooked and irregular spiral forms. No diffusible pigments are detected on any of the media tested. The optimum growth temperature, pH and NaCl concentration are 30°C, 8 and 0% (w/v), respectively. Acetate, aesculin, casein, gelatin, hypoxanthine, pyruvate and Tween 80 are degraded, but adenine, arbutin, benzoate, guanine, oxalate, propionate, starch, succinate, tartrate, L-tyrosine and xanthine are not. Negative for nitrate reduction. Milk peptonisation is positive, while milk coagulation is negative. Adonitol, D-cellobiose, D-maltose, D-mannose, D-ribose and D-trehalose are utilized, but L-arabinose, D-fructose, D-galactose, D-glucose, D-lactose, D-mannitol, D-melibiose, D-raffinose, L-rhamnose, D-sorbitol and D-xyllose are not decomposed. The diamino acid in the cell wall is meso-diaminopimelic acid. Madurose is the diagnostic sugar in whole-cell hydrolysates. The major phospholipids are dipheosphatidylglycerol and phosphatidylinositol. The predominant menaquinone is MK-9(H₄). The major fatty acids are C₁₀:0, 10-methyl C₁₇:0, C₁₇:1ω9c, C₁₅:0 and 10-methyl C₁₈:0.

The type strain is ACD12ᵀ (=DSM 46745ᵀ = CECT 8842ᵀ) isolated from a Saharan soil sample collected from Bouda region, Adrar province (South Algeria).

Acknowledgements

We would like to gratefully acknowledge the help of Gabriele Pötter (DSMZ) for growing Actinomadura adraensis cultures and for assistance with chemotaxonomical analyses and Bettina Sträubler (DSMZ) for assistance with DNA–DNA hybridizations.

Reference

http://ijs.microbiologyresearch.org

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGAS: molecular evolutionary genetics analysis using

